toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Andreatta, G.; Tessmar-Raible, K. url  doi
openurl 
  Title The still dark side of the moon: molecular mechanisms of lunar-controlled rhythms and clocks Type Journal Article
  Year 2020 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume in press Issue Pages  
  Keywords Review; Animals; Hormones; Lunar rhythms; Physiology; Proteome; Transcriptome  
  Abstract Starting with the beginning of the last century, a multitude of scientific studies has documented that the lunar cycle times behaviors and physiology in many organisms. It is plausible that even the first life forms adapted to the different rhythms controlled by the moon. Consistently, many marine species exhibit lunar rhythms, and also the number of documented “lunar-rhythmic” terrestrial species is increasing. Organisms follow diverse lunar geophysical/astronomical rhythms, which differ significantly in terms of period length: from hours (circalunidian and circatidal rhythms) to days (circasemilunar and circalunar cycles). Evidence for internal circatital and circalunar oscillators exists for a range of species based on past behavioral studies, but those species with well-documented behaviorally free-running lunar rhythms are not typically used for molecular studies. Thus, the underlying molecular mechanisms are largely obscure: the dark side of the moon. Here we review findings which start to connect molecular pathways with moon-controlled physiology and behaviors. The present data indicate connections between metabolic/endocrine pathways and moon-controlled rhythms, as well as interactions between circadian and circatidal/circalunar rhythms. Moreover, recent high-throughput analyses provide useful leads towards pathways, as well as molecular markers. However, for each interpretation it is important to carefully consider the – partly substantially differing – conditions used in each experimental paradigm. In the future, it will be important to use lab experiments to delineate the specific mechanisms of the different solar- and lunar-controlled rhythms, but to also start integrating them together, as life has evolved equally long under rhythms of both sun and moon.  
  Address Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna; Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna. Electronic address: kristin.tessmar@mfpl.ac.at  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32198116 Approved no  
  Call Number GFZ @ kyba @ Serial 2865  
Permanent link to this record
 

 
Author (up) Atchoi, E.; Mitkus, M.; Rodríguez, A. url  doi
openurl 
  Title Is seabird light‐induced mortality explained by the visual system development? Type Journal Article
  Year 2020 Publication Conservation Science and Practice Abbreviated Journal Conservat Sci and Prac  
  Volume in press Issue Pages  
  Keywords Animals  
  Abstract Seabirds are impacted by coastal light pollution, leading to massive mortality events. Juveniles comprise the majority of affected individuals, while adults are only seldom grounded and reported in rescue programs. We propose a connection between visual system development of burrow nesting seabirds and the observed higher vulnerability to light pollution by a specific age group. We illustrate the need for multidisciplinary research to better understand and further mitigate light-induced mortality.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2578-4854 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2845  
Permanent link to this record
 

 
Author (up) Benito, B.; Guillamón, M.-D.; Martínez-Córdoba, P.-J. url  doi
openurl 
  Title Determinants of efficiency improvement in the Spanish public lighting sector Type Journal Article
  Year 2020 Publication Utilities Policy Abbreviated Journal Utilities Policy  
  Volume 64 Issue Pages 101026  
  Keywords Lighting; Economics  
  Abstract This research analyzes the factors that can improve the efficiency of public lighting. First, the annual and inter-annual efficiency levels are calculated. Second, the effects of a set of environmental variables on these efficiency levels are checked with a truncated regression model. The results show that public management is more efficient than private or mixed management. Higher tourism, stronger local governments, and more hours of sunlight appear to improve efficiency. Local governments with the highest budgetary revenues and the most urbanized area experience the greatest improvement in efficiency year after year.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-1787 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2840  
Permanent link to this record
 

 
Author (up) Berge, J.; Geoffroy, M.; Daase, M.; Cottier, F.; Priou, P.; Cohen, J.H.; Johnsen, G.; McKee, D.; Kostakis, I.; Renaud, P.E.; Vogedes, D.; Anderson, P.; Last, K.S.; Gauthier, S. url  doi
openurl 
  Title Artificial light during the polar night disrupts Arctic fish and zooplankton behaviour down to 200 m depth Type Journal Article
  Year 2020 Publication Communications Biology Abbreviated Journal Commun Biol  
  Volume 3 Issue 1 Pages article 102  
  Keywords Animals  
  Abstract For organisms that remain active in one of the last undisturbed and pristine dark environments on the planet—the Arctic Polar Night—the moon, stars and aurora borealis may provide important cues to guide distribution and behaviours, including predator-prey interactions. With a changing climate and increased human activities in the Arctic, such natural light sources will in many places be masked by the much stronger illumination from artificial light. Here we show that normal working-light from a ship may disrupt fish and zooplankton behaviour down to at least 200 m depth across an area of >0.125 km2 around the ship. Both the quantitative and qualitative nature of the disturbance differed between the examined regions. We conclude that biological surveys in the dark from illuminated ships may introduce biases on biological sampling, bioacoustic surveys, and possibly stock assessments of commercial and non-commercial species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2399-3642 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2837  
Permanent link to this record
 

 
Author (up) Bhardwaj, M.; Soanes, K.; Lahoz-Monfort, J.J.; Lumsden, L.F.; van der Ree, R. url  doi
openurl 
  Title Artificial lighting reduces the effectiveness of wildlife-crossing structures for insectivorous bats Type Journal Article
  Year 2020 Publication Journal of Environmental Management Abbreviated Journal Journal of Environmental Management  
  Volume 262 Issue Pages 110313  
  Keywords Animals  
  Abstract In an attempt to improve cost-effectiveness, it has become increasingly popular to adapt wildlife crossing structures to enable people to also use them for safe passage across roads. However, the required needs of humans and wildlife may conflict, resulting in a structure that does not actually provide the perceived improvement in cost-effectiveness, but instead a reduction in conservation benefits. For example, lighting within crossing structures for human safety at night may reduce use of the structure by nocturnal wildlife, thus contributing to barrier and mortality effects of roads rather than mitigating them.

In this study, we experimentally evaluated the impact of artificial light at night on the rate of use of wildlife crossing structures, specifically underpasses, by ten insectivorous bat species groups in south-eastern Australia. We monitored bat activity before, during and after artificially lighting the underpasses. We found that bats tended to avoided lit underpasses, and only one species consistently showed attraction to the light. Artificial light at night in underpasses hypothetically increases the vulnerability of bats to road-mortality or to the barrier effect of roads. The most likely outcomes of lighting underpasses were 1. an increase in crossing rate above the freeway and a decrease under the underpasses, or 2. a reduction in crossing rate both above freeways and under the underpasses, when structures were lit. Our results corroborate those of studies on terrestrial mammals, and thus we recommend that underpasses intended to facilitate the movement of wildlife across roads should not be lit.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2846  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: