toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ostrin, L.A. url  doi
openurl 
  Title Ocular and systemic melatonin and the influence of light exposure Type Journal Article
  Year 2018 Publication Clinical & Experimental Optometry Abbreviated Journal Clin Exp Optom  
  Volume in press Issue Pages (up) in press  
  Keywords Vision; Review; Human Health  
  Abstract Melatonin is a neurohormone known to modulate a wide range of circadian functions, including sleep. The synthesis and release of melatonin from the pineal gland is heavily influenced by light stimulation of the retina, particularly through the intrinsically photosensitive retinal ganglion cells. Melatonin is also synthesised within the eye, although to a much lesser extent than in the pineal gland. Melatonin acts directly on ocular structures to mediate a variety of diurnal rhythms and physiological processes within the eye. The interactions between melatonin, the eye, and visual function have been the subject of a considerable body of recent research. This review is intended to provide a broad introduction for eye-care practitioners and researchers to the topic of melatonin and the eye. The first half of the review describes the anatomy and physiology of melatonin production: how visual inputs affect the pineal production of melatonin; how melatonin is involved in a variety of diurnal rhythms within the eye, including photoreceptor disc shedding, neuronal sensitivity, and intraocular pressure control; and melatonin production and physiological roles in retina, ciliary body, lens and cornea. The second half of the review describes clinical implications of light/melatonin interactions. These include light exposure and photoreceptor contributions in melatonin suppression, leading to consideration of how blue blockers, cataract, and light therapy might affect sleep and mood in patients. Additionally, the interactions between melatonin, sleep and refractive error development are discussed. A better understanding of environmental factors that affect melatonin and subsequent effects on physiological processes will allow clinicians to develop treatments and recommend modifiable behaviours to improve sleep, increase daytime alertness, and regulate ocular and systemic processes related to melatonin.  
  Address University of Houston College of Optometry, Houston, Texas, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0816-4622 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30074278 Approved no  
  Call Number GFZ @ kyba @ Serial 1986  
Permanent link to this record
 

 
Author Wilson IV, J.; Reid, K.J.; Braun, R.I.; Abbott, S.M.; Zee, P.C. url  doi
openurl 
  Title Habitual Light Exposure Relative to Circadian Timing in Delayed Sleep-Wake Phase Disorder Type Journal Article
  Year 2018 Publication Sleep Abbreviated Journal  
  Volume in press Issue Pages (up)  
  Keywords Human Health  
  Abstract Study Objectives

To compare melatonin timing, a well validated marker for endogenous circadian phase, and habitual light exposure patterns in adults with delayed sleep-wake phase disorder (DSWPD) and intermediate chronotype controls.

Methods

12 individuals with DSWPD (5 females, mean age 31.1) and 12 age matched controls (6 females, mean age 33.6) underwent a minimum of seven days of light and activity monitoring followed by an inpatient hospital stay, where blood was taken to assess melatonin timing (calculated as dim light melatonin onset – DLMO). Habitual light exposure patterns were then compared to a human phase response curve (PRC) to light.

Results

Relative to clock time, individuals with DSWPD had a later light exposure pattern compared to controls, but their light exposure pattern was earlier relative to DLMO. According to the human phase response curve (PRC) to light, individuals with DSWPD had less daily advancing light exposure compared to controls. The primary difference was seen in the late portion of the advancing window, in which individuals with DSWPD were exposed to fewer pulses of light of equivalent duration and intensity compared to controls.

Conclusions

Diminished advancing light exposure may play a role in the development and perpetuation of delayed sleep-wake timing in individuals with DSWPD. Enhancing light exposure during the later portion of the advancing window represents an innovative and complementary strategy that has the potential to improve the effectiveness of bright light therapy in DSWPD.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0161-8105 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1990  
Permanent link to this record
 

 
Author Suh, Y.-W.; Na, K.-H.; Ahn, S.-E.; Oh, J. url  doi
openurl 
  Title Effect of Ambient Light Exposure on Ocular Fatigue during Sleep Type Journal Article
  Year 2018 Publication Journal of Korean Medical Science Abbreviated Journal J Korean Med Sci  
  Volume 33 Issue 38 Pages (up)  
  Keywords Human Health  
  Abstract Background

To investigate the influence of nocturnal ambient light on visual function and ocular fatigue.

Methods

Sixty healthy subjects (30 males and 30 females) aged 19 through 29 years with no history of ocular disease were recruited. All subjects spent 3 consecutive nights in the sleep laboratory. During the first and second nights, the subjects were not exposed to light during sleep, but during the third night, they were exposed to ambient light, measuring 5 or 10 lux at the eye level, which was randomly allocated with 30 subjects each. The visual function and ocular fatigue were assessed at 7 a.m. on the 3rd and 4th mornings, using best-corrected visual acuity, refractive error, conjunctival hyperemia, tear break-up time, maximal blinking interval, ocular surface temperature, and subjective symptoms reported on a questionnaire.

Results

Three male and three female subjects failed to complete the study (4 in the 5 lux; 2 from the 10 lux). For the entire 54 subjects, tear break-up time and maximal blinking interval decreased (P = 0.015; 0.010, respectively), and nasal and temporal conjunctival hyperemia increased significantly after sleep under any ambient light (P < 0.001; 0.021, respectively). Eye tiredness and soreness also increased (P = 0.004; 0.024, respectively). After sleep under 5 lux light, only nasal conjunctival hyperemia increased significantly (P = 0.008). After sleep under 10 lux light, nasal and temporal conjunctival hyperemia, eye tiredness, soreness, difficulty in focusing, and ocular discomfort increased significantly (P < 0.05).

Conclusion

Nocturnal ambient light exposure increases ocular fatigue. Avoiding ambient light during sleep could be recommended to prevent ocular fatigue.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1011-8934 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1991  
Permanent link to this record
 

 
Author McGlashan, E.M.; Nandam, L.S.; Vidafar, P.; Mansfield, D.R.; Rajaratnam, S.M.W.; Cain, S.W. url  doi
openurl 
  Title The SSRI citalopram increases the sensitivity of the human circadian system to light in an acute dose Type Journal Article
  Year 2018 Publication Psychopharmacology Abbreviated Journal Psychopharmacology (Berl)  
  Volume in press Issue Pages (up) in press  
  Keywords Human Health  
  Abstract RATIONALE: Disturbances of the circadian system are common in depression. Though they typically subside when depression is treated with antidepressants, the mechanism by which this occurs is unknown. Despite being the most commonly prescribed class of antidepressants, the effect of selective serotonin reuptake inhibitors (SSRIs) on the human circadian clock is not well understood. OBJECTIVE: To examine the effect of the SSRI citalopram (30 mg) on the sensitivity of the human circadian system to light. METHODS: This study used a double-blind, placebo-controlled, within-subjects, crossover design. Participants completed two melatonin suppression assessments in room level light (~ 100 lx), taking either a single dose of citalopram 30 mg or a placebo at the beginning of each light exposure. Melatonin suppression was calculated by comparing placebo and citalopram light exposure conditions to a dim light baseline. RESULTS: A 47% increase in melatonin suppression was observed after administration of an acute dose of citalopram, with all participants showing more suppression after citalopram administration (large effect, d = 1.54). Further, melatonin onset occurred later under normal room light with citalopram compared to placebo. CONCLUSIONS: Increased sensitivity of the circadian system to light could assist in explaining some of the inter-individual variability in antidepressant treatment responses, as it is likely to assist in recovery in some patients, while causing further disruption for others.  
  Address Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, 18 Innovation Walk, Clayton, VIC, 3800, Australia. sean.cain@monash.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-3158 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30219986 Approved no  
  Call Number GFZ @ kyba @ Serial 2012  
Permanent link to this record
 

 
Author Hanifin, J.P.; Lockley, S.W.; Cecil, K.; West, K.; Jablonski, M.; Warfield, B.; James, M.; Ayers, M.; Byrne, B.; Gerner, E.; Pineda, C.; Rollag, M.; Brainard, G.C. url  doi
openurl 
  Title Randomized trial of polychromatic blue-enriched light for circadian phase shifting, melatonin suppression, and alerting responses Type Journal Article
  Year 2018 Publication Physiology & Behavior Abbreviated Journal Physiol Behav  
  Volume in press Issue Pages (up)  
  Keywords Human Health  
  Abstract Wavelength comparisons have indicated that circadian phase-shifting and enhancement of subjective and EEG-correlates of alertness have a higher sensitivity to short wavelength visible light. The aim of the current study was to test whether polychromatic light enriched in the blue portion of the spectrum (17,000K) has increased efficacy for melatonin suppression, circadian phase-shifting, and alertness as compared to an equal photon density exposure to a standard white polychromatic light (4000K). Twenty healthy participants were studied in a time-free environment for 7days. The protocol included two baseline days followed by a 26-h constant routine (CR1) to assess initial circadian phase. Following CR1, participants were exposed to a full-field fluorescent light (1x10(14) photons/cm(2)/s, 4000K or 17,000K, n=10/condition) for 6.5h during the biological night. Following an 8h recovery sleep, a second 30-h CR was performed. Melatonin suppression was assessed from the difference during the light exposure and the corresponding clock time 24h earlier during CR1. Phase-shifts were calculated from the clock time difference in dim light melatonin onset time (DLMO) between CR1 and CR2. Blue-enriched light caused significantly greater suppression of melatonin than standard light ((mean+/-SD) 70.9+/-19.6% and 42.8+/-29.1%, respectively, p<0.05). There was no significant difference in the magnitude of phase delay shifts. Blue-enriched light significantly improved subjective alertness (p<0.05) but no differences were found for objective alertness. These data contribute to the optimization of the short wavelength-enriched spectra and intensities needed for circadian, neuroendocrine and neurobehavioral regulation.  
  Address Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9384 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30296404 Approved no  
  Call Number GFZ @ kyba @ Serial 2025  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: