|   | 
Details
   web
Records
Author (up) Li, X.; Levin, N.; Xie, J.; Li, D.
Title Monitoring hourly night-time light by an unmanned aerial vehicle and its implications to satellite remote sensing Type Journal Article
Year 2020 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 247 Issue Pages in press
Keywords Remote Sensing; Skyglow; Instrumentation
Abstract Satellite-observed night-time light in urban areas has been widely used as an indicator for socioeconomic development and light pollution. Up to present, the diurnal dynamics of city light during the night, which are important to understand the nature of human activity and the underlying variables explaining night-time brightness, have hardly been investigated by remote sensing techniques due to limitation of the revisit time and spatial resolution of available satellites. In this study, we employed a consumer-grade unmanned aerial vehicle (UAV) to monitor city light in a study area located in Wuhan City, China, from 8:08 PM, April 15, 2019 to 5:08 AM, April 16, 2019, with an hourly temporal resolution. By using three ground-based Sky Quality Meters (SQMs), we found that the UAV-recorded light brightness was consistent with the ground luminous intensity measured by the SQMs in both the spatial (R2 = 0.72) and temporal dimensions (R2 > 0.94), and that the average city light brightness was consistent with the sky brightness in the temporal dimension (R2 = 0.98), indicating that UAV images can reliably monitor the city's night-time brightness. The temporal analysis showed that different locations had different patterns of temporal changes in their night-time brightness, implying that inter-calibration of two kinds of satellite images with different overpass times would be a challenge. Combining an urban function map of 18 classes and the hourly UAV images, we found that urban functions differed in their temporal light dynamics. For example, the outdoor sports field lost 97.28% of its measured brightness between 8: 08 PM – 4:05 AM, while an administrative building only lost 4.56%, and the entire study area lost 61.86% of its total brightness. Within our study area, the period between 9:06 PM and 10:05 PM was the period with largest amount of light loss. The spectral analysis we conducted showed that city light colors were different in some urban functions, with the major road being the reddest region at 8:08 PM and becoming even redder at 4:05 AM. This preliminary study indicates that UAVs are a good tool to investigate city light at night, and that city light is very complex in both of the temporal and spatial dimensions, requiring comprehensive investigation using more advanced UAV techniques, and emphasizing the need for geostationary platforms for night-time light sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3014
Permanent link to this record
 

 
Author (up) Li, X.; Li, D.; Xu, H.; Wu, C.
Title Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria’s major human settlement during Syrian Civil War Type Journal Article
Year 2017 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing
Volume 38 Issue 21 Pages 5934-5951
Keywords Remote Sensing; Instrumentation; Society
Abstract Monthly composites of night-time light acquired from the Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) had been used to evaluate socio-economic dynamics and human rights during the Syrian Civil War, which started in March 2011. However, DMSP/OLS monthly composites are not available subsequent to February 2014, and the only available night-time light composites for that period were acquired from the Suomi National Polar-orbiting Partnership satellite’s Visible Infrared Imaging Radiometer Suite (Suomi NPP/VIIRS). This article proposes an intercalibration model to simulate DMSP/OLS composites from the VIIRS day-and-night band (DNB) composites, by using a power function for radiometric degradation and a Gaussian low pass filter for spatial degradation. The DMSP/OLS data and the simulated DMSP/OLS data were combined to estimate the city light dynamics in Syria’s major human settlement between March 2011 and January 2017. Our analysis shows that Syria’s major human settlement lost about 79% of its city light by January 2017, with Aleppo, Daraa, Deir ez-Zor, and Idlib provinces losing 89%, 90%, 96%, and 99% of their light, respectively, indicating that these four provinces were most affected by the war. We also found that the city light in Syria and 12 provinces rebounded from early 2016 to January 2017, possibly as a result of the peace negotiation signed in Geneva.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0143-1161 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1873
Permanent link to this record
 

 
Author (up) Li, X.; Li, X.; Li, D.; He, X.; Jendryke, M.
Title A preliminary investigation of Luojia-1 night-time light imagery Type Journal Article
Year 2019 Publication Remote Sensing Letters Abbreviated Journal Remote Sensing Letters
Volume 10 Issue 6 Pages 526-535
Keywords Remote Sensing; Instrumentation
Abstract Launched on 2 June 2018, Luojia-1 satellite records night-time light imagery at 130 m resolution, which is higher than most of the existing night-time light images to date. This study evaluated radiometric and spatial properties of the Luojia-1 satellite imagery for cities of Los Angeles, Wuhan and Rome as well as the change detection capability for Zunyi city. For the radiometric property, the analysis shows that the Luojia-1 images correlate well with the radiance of the Visible Infrared Imaging Radiometer Suite (VIIRS)’s Day and Night Band (DNB), and that the Luojia-1 images have a wider range of radiance values, as well as higher radiance values (e.g., 40%–90% higher) than the VIIRS DNB images. Using wavelet decomposition and change detection analysis to evaluate spatial property and change detection capability, it was found that the Luojia-1 images provide abundant spatial detail information, with about 20%–54% energy of wavelet component of the images stored in 100–400 m resolutions, and they can help to track the electrification of new roads and buildings at a fine resolution. This study shows that the Luojia-1 images are an effective data source for analysing spatiotemporal distribution of night-time light and its associated socioeconomic attributes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2150-704X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2199
Permanent link to this record
 

 
Author (up) Li, X.; Ma, R.; Zhang, Q.; Li, D.; Liu, S.; He, T.; Zhao, L.
Title Anisotropic characteristic of artificial light at night – Systematic investigation with VIIRS DNB multi-temporal observations Type Journal Article
Year 2019 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 233 Issue Pages 111357
Keywords Remote Sensing; Instrumentation
Abstract The released VIIRS DNB nightly images, also known as VIIRS DNB daily nighttime images, provide rich information for time series analysis of global socioeconomic dynamics. Anisotropic characteristic is a possible factor that influences the VIIRS DNB radiance at night and its time series analysis. This study aims to investigate the relationship between viewing angles and VIIRS DNB radiance of Suomi NPP satellite in urban areas. First, twenty-nine points were selected globally to explore the angle variation of Suomi NPP satellite views at night. We found that the variation of the satellite viewing zenith angle (VZA) is consistent (e.g. between 0° and 70°) since the range of VZA is fixed depending on the sensor design, and the range of viewing azimuth angle (VAA) increases with the increase of latitude. Second, thirty points in cities of Beijing, Houston, Los Angeles, Moscow, Quito and Sydney, were used to investigate the angle-radiance relationship. We proposed a zenith-radiance quadratic (ZRQ) model and a zenith-azimuth-radiance binary quadratic (ZARBQ) model to quantify the relationship between satellite viewing angles and artificial light radiance, which has been corrected by removing the moonlight and atmospheric impact from VIIRS DNB radiance products. For all the thirty points, the ZRQ and ZARBQ analysis have averaged R2 of 0.50 and 0.53, respectively, which indicates that the viewing angles are important factors influencing the variation of the artificial light radiance, but extending zenith to zenith-azimuth does not much better explain the variation of the observed artificial light. Importantly, based on the data analysis, we can make the hypothesis that building height may affect the relationship between VZA and artificial light, and cold and hot spot effects are clearly found in tall building areas. These findings are potentially useful to reconstruct more stable time series VIIRS DNB images for socioeconomic applications by removing the angular effects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2621
Permanent link to this record
 

 
Author (up) Li, X.; Zhao, L.; Li, D.; Xu, H.
Title Mapping Urban Extent Using Luojia 1-01 Nighttime Light Imagery Type Journal Article
Year 2018 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)
Volume 18 Issue 11 Pages
Keywords Instrumentation; Remote Sensing
Abstract Luojia 1-01 satellite, launched on 2 June 2018, provides a new data source of nighttime light at 130 m resolution and shows potential for mapping urban extent. In this paper, using Luojia 1-01 and VIIRS nighttime light imagery, we compared several methods for extracting urban areas, including Human Settlement Index (HSI), Simple Thresholding Segmentation (STS) and SVM supervised classification. According to the accuracy assessment, the HSI method using LJ1-01 data had the best performance in urban extent extraction, which presented the largest Kappa Coefficient value, 0.834, among all the results. For the urban areas extracted by VIIRS based HSI method, the largest Kappa Coefficient value was 0.772. In contrast, the largest Kappa Coefficient values obtained by STS method were 0.79 and 0.7512 respectively when using LJ1-01 and VIIRS data, while for SVM method the values were 0.7829 and 0.7486 when using Landsat-LJ and Landsat-VIIRS composite data respectively. The experimented results demonstrated that the utilization of nighttime light imagery can largely improve the accuracy of urban extent extraction and LJ1-01 data, with a higher resolution and more abundant spatial information, can lead to better identification results than its predecessors.
Address Key Laboratory of the Ministry of Land and Resources for Law Evaluation Engineering, Wuhan 430074, China. xuhuimin1985_2008@163.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes PMID:30380616 Approved no
Call Number GFZ @ kyba @ Serial 2056
Permanent link to this record