|   | 
Details
   web
Records
Author Li, X.; Li, D.; Xu, H.; Wu, C.
Title Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria’s major human settlement during Syrian Civil War Type Journal Article
Year 2017 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing
Volume 38 Issue 21 Pages (down) 5934-5951
Keywords Remote Sensing; Instrumentation; Society
Abstract Monthly composites of night-time light acquired from the Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) had been used to evaluate socio-economic dynamics and human rights during the Syrian Civil War, which started in March 2011. However, DMSP/OLS monthly composites are not available subsequent to February 2014, and the only available night-time light composites for that period were acquired from the Suomi National Polar-orbiting Partnership satellite’s Visible Infrared Imaging Radiometer Suite (Suomi NPP/VIIRS). This article proposes an intercalibration model to simulate DMSP/OLS composites from the VIIRS day-and-night band (DNB) composites, by using a power function for radiometric degradation and a Gaussian low pass filter for spatial degradation. The DMSP/OLS data and the simulated DMSP/OLS data were combined to estimate the city light dynamics in Syria’s major human settlement between March 2011 and January 2017. Our analysis shows that Syria’s major human settlement lost about 79% of its city light by January 2017, with Aleppo, Daraa, Deir ez-Zor, and Idlib provinces losing 89%, 90%, 96%, and 99% of their light, respectively, indicating that these four provinces were most affected by the war. We also found that the city light in Syria and 12 provinces rebounded from early 2016 to January 2017, possibly as a result of the peace negotiation signed in Geneva.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0143-1161 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1873
Permanent link to this record
 

 
Author Bará, S.
Title Characterizing the zenithal night sky brightness in large territories: how many samples per square kilometre are needed? Type Journal Article
Year 2017 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal
Volume 473 Issue 3 Pages (down) 4164-4173
Keywords Instrumentation; atmospheric effects; light pollution; numerical methods; photometry
Abstract A recurring question arises when trying to characterize, by means of measurements or theoretical calculations, the zenithal night sky brightness throughout a large territory: how many samples per square kilometre are needed? The optimum sampling distance should allow reconstructing, with sufficient accuracy, the continuous zenithal brightness map across the whole region, whilst at the same time avoiding unnecessary and redundant oversampling. This paper attempts to provide some tentative answers to this issue, using two complementary tools: the luminance structure function and the Nyquist–Shannon spatial sampling theorem. The analysis of several regions of the world, based on the data from the New world atlas of artificial night sky brightness, suggests that, as a rule of thumb, about one measurement per square kilometre could be sufficient for determining the zenithal night sky brightness of artificial origin at any point in a region to within ±0.1 magV arcsec–2 (in the root-mean-square sense) of its true value in the Johnson–Cousins V band. The exact reconstruction of the zenithal night sky brightness maps from samples taken at the Nyquist rate seems to be considerably more demanding.
Address 1Departamento de Física Aplicada, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher Oxford Academic Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2164
Permanent link to this record
 

 
Author Coesfeld, J.; Kuester, T.; Kuechly, H.U.; Kyba, C.C.M.
Title Reducing Variability and Removing Natural Light from Nighttime Satellite Imagery: A Case Study Using the VIIRS DNB Type Journal Article
Year 2020 Publication Sensors Abbreviated Journal Sensors
Volume 20 Issue 11 Pages (down) 3287
Keywords Remote Sensing; Instrumentation
Abstract Temporal variation of natural light sources such as airglow limits the ability of night light sensors to detect changes in small sources of artificial light (such as villages). This study presents a method for correcting for this effect globally, using the satellite radiance detected from regions without artificial light emissions. We developed a routine to define an approximate grid of locations worldwide that do not have regular light emission. We apply this method with a 5 degree equally spaced global grid (total of 2016 individual locations), using data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB). This code could easily be adapted for other future global sensors. The correction reduces the standard deviation of data in the Earth Observation Group monthly DNB composites by almost a factor of two. The code and datasets presented here are available under an open license by GFZ Data Services, and are implemented in the Radiance Light Trends web application.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2988
Permanent link to this record
 

 
Author Yuan, X.; Jia, L.; Menenti, M.; Zhou, J.; Chen, Q.
Title Filtering the NPP-VIIRS Nighttime Light Data for Improved Detection of Settlements in Africa Type Journal Article
Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 11 Issue 24 Pages (down) 3002
Keywords Remote Sensing; Instrumentation
Abstract Observing and understanding changes in Africa is a hotspot in global ecological environmental research since the early 1970s. As possible causes of environmental degradation, frequent droughts and human activities attracted wide attention. Remote sensing of nighttime light provides an effective way to map human activities and assess their intensity. To identify settlements more effectively, this study focused on nighttime light in the northern Equatorial Africa and Sahel settlements to propose a new method, namely, the patches filtering method (PFM) to identify nighttime lights related to settlements from the National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) monthly nighttime light data by separating signal components induced by biomass burning, thereby generating a new annual image in 2016. The results show that PFM is useful for improving the quality of NPP-VIIRS monthly nighttime light data. Settlement lights were effectively separated from biomass burning lights, in addition to capturing the seasonality of biomass burning. We show that the new 2016 nighttime light image can very effectively identify even small settlements, notwithstanding their fragmentation and unstable power supply. We compared the image with earlier NPP-VIIRS annual nighttime light data from the National Oceanic and Atmospheric Administration (NOAA) National Center for Environmental Information (NCEI) for 2016 and the Sentinel-2 prototype Land Cover 20 m 2016 map of Africa released by the European Space Agency (ESA-S2-AFRICA-LC20). We found that the new annual nighttime light data performed best among the three datasets in capturing settlements, with a high recognition rate of 61.8%, and absolute superiority for settlements of 2.5 square kilometers or less. This shows that the method separates biomass burning signals very effectively, while retaining the relatively stable, although dim, lights of small settlements. The new 2016 annual image demonstrates good performance in identifying human settlements in sparsely populated areas toward a better understanding of human activities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2890
Permanent link to this record
 

 
Author Jiang, W.; He, G.; Long, T.; Guo, H.; Yin, R.; Leng, W.; Liu, H.; Wang, G.
Title Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution Type Journal Article
Year 2018 Publication Sensors Abbreviated Journal Sensors
Volume 18 Issue 9 Pages (down) 2900
Keywords Remote Sensing; Instrumentation
Abstract The successful launch of Luojia 1-01 complements the existing nighttime light data with a high spatial resolution of 130 m. This paper is the first study to assess the potential of using Luojia 1-01 nighttime light imagery for investigating artificial light pollution. Eight Luojia 1-01 images were selected to conduct geometric correction. Then, the ability of Luojia 1-01 to detect artificial light pollution was assessed from three aspects, including the comparison between Luojia 1-01 and the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS), the source of artificial light pollution and the patterns of urban light pollution. Moreover, the advantages and limitations of Luojia 1-01 were discussed. The results showed the following: (1) Luojia 1-01 can detect a higher dynamic range and capture the finer spatial details of artificial nighttime light. (2) The averages of the artificial light brightness were different between various land use types. The brightness of the artificial light pollution of airports, streets, and commercial services is high, while dark areas include farmland and rivers. (3) The light pollution patterns of four cities decreased away from the urban core and the total light pollution is highly related to the economic development. Our findings confirm that Luojia 1-01 can be effectively used to investigate artificial light pollution. Some limitations of Luojia 1-01, including its spectral range, radiometric calibration and the effects of clouds and moonlight, should be researched in future studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1997
Permanent link to this record