|
Records |
Links |
|
Author |
Warrant, E. |

|
|
Title |
Superior vision in nocturnal insects inspires new night vision technologies |
Type |
Newspaper Article |
|
Year |
2016 |
Publication |
SPIE Newsroom |
Abbreviated Journal |
SPIE Newsroom |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Vision; Animals; Instrumentation |
|
|
Abstract |
Algorithms that dramatically improve the quality of video sequences captured in very dim light have been developed on the basis of the neural mechanisms in nocturnal insects with excellent visual capabilities. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language  |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1818-2259 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
LoNNe @ kyba @; GFZ @ kyba @ |
Serial |
1418 |
|
Permanent link to this record |
|
|
|
|
Author |
Levin, N.; Phinn, S. |

|
|
Title |
Illuminating the capabilities of Landsat 8 for mapping night lights |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Remote Sensing of Environment |
Abbreviated Journal |
Remote Sensing of Environment |
|
|
Volume |
182 |
Issue |
|
Pages |
27-38 |
|
|
Keywords |
Remote Sensing; Instrumentation |
|
|
Abstract |
Remote sensing of night-lights has been enhanced in recent years with the availability of the new VIIRS Day and Night band, the commercial EROS-B satellite and astronaut photographs from the International Space Station. However, dedicated space-borne multispectral sensors offering radiance calibrated night lights imagery are yet to be launched. Here we examined the capabilities of Landsat 8 to acquire night time light images of the Earth. Examining seven night-time Landsat 8 scenes, we found that brightly lit areas in both urban (Berlin, Las Vegas, Nagoya and Tel-Aviv) and gas flares (Basra, Kuwait) areas were detected in all eight bands of Landsat 8. The threshold for detection of lit areas was approximately 0.4 W/m2/μm/sr in bands 1â5 and 8 of Landsat 8. This threshold level was higher than Landsat dark noise levels, and slightly lower than post launch Landsat 8 OLI band dependent noise equivalent radiance difference levels. Drawing on this, we call on the USGS to plan an annual night-time acquisition of urban and gas flares areas globally, and to enable the performance of the future Landsat 10 to be established in a way that it will be sensitive enough to image the Earth at night, thus performing as Nightsat during the night. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language  |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0034-4257 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
LoNNe @ kyba @ |
Serial |
1452 |
|
Permanent link to this record |
|
|
|
|
Author |
Zoogman, P.; Liu, X.; Suleiman, R.M.; Pennington, W.F.; Flittner, D.E.; Al-Saadi, J.A.; Hilton, B.B.; Nicks, D.K.; Newchurch, M.J.; Carr, J.L.; Janz, S.J.; Andraschko, M.R.; Arola, A.; Baker, B.D.; Canova, B.P.; Chan Miller, C.; Cohen, R.C.; Davis, J.E.; Dussault, M.E.; Edwards, D.P.; Fishman, J.; Ghulam, A.; González Abad, G.; Grutter, M.; Herman, J.R.; Houck, J.; Jacob, D.J.; Joiner, J.; Kerridge, B.J.; Kim, J.; Krotkov, N.A.; Lamsal, L.; Li, C.; Lindfors, A.; Martin, R.V.; McElroy, C.T.; McLinden, C.; Natraj, V.; Neil, D.O.; Nowlan, C.R.; OSullivan, E.J.; Palmer, P.I.; Pierce, R.B.; Pippin, M.R.; Saiz-Lopez, A.; Spurr, R.J.D.; Szykman, J.J.; Torres, O.; Veefkind, J.P.; Veihelmann, B.; Wang, H.; Wang, J.; Chance, K. |

|
|
Title |
Tropospheric emissions: Monitoring of pollution (TEMPO) |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
Journal of Quantitative Spectroscopy and Radiative Transfer |
|
|
Volume |
186 |
Issue |
|
Pages |
17-39 |
|
|
Keywords |
Instrumentation, Remote Sensing |
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language  |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
LoNNe @ kyba @ |
Serial |
1498 |
|
Permanent link to this record |
|
|
|
|
Author |
Alamús, R.; Bará, S.; Corbera, J.; Escofet, J.; Palà , V.; Pipia, L.; Tardà, A. |

|
|
Title |
Ground-based hyperspectral analysis of the urban nightscape |
Type |
Journal Article |
|
Year |
2017 |
Publication |
ISPRS Journal of Photogrammetry and Remote Sensing |
Abbreviated Journal |
ISPRS Journal of Photogrammetry and Remote Sensing |
|
|
Volume |
124 |
Issue |
|
Pages |
16-26 |
|
|
Keywords |
Instrumentation; Remote Sensing |
|
|
Abstract |
Airborne hyperspectral cameras provide the basic information to estimate the energy wasted skywards by outdoor lighting systems, as well as to locate and identify their sources. However, a complete characterization of the urban light pollution levels also requires evaluating these effects from the city dwellers standpoint, e.g. the energy waste associated to the excessive illuminance on walls and pavements, light trespass, or the luminance distributions causing potential glare, to mention but a few. On the other hand, the spectral irradiance at the entrance of the human eye is the primary input to evaluate the possible health effects associated with the exposure to artificial light at night, according to the more recent models available in the literature. In this work we demonstrate the possibility of using a hyperspectral imager (routinely used in airborne campaigns) to measure the ground-level spectral radiance of the urban nightscape and to retrieve several magnitudes of interest for light pollution studies. We also present the preliminary results from a field campaign carried out in the downtown of Barcelona. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language  |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0924-2716 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
LoNNe @ kyba @ |
Serial |
1613 |
|
Permanent link to this record |
|
|
|
|
Author |
Voigt, L.P.; Reynolds, K.; Mehryar, M.; Chan, W.S.; Kostelecky, N.; Pastores, S.M.; Halpern, N.A. |

|
|
Title |
Monitoring sound and light continuously in an intensive care unit patient room: A pilot study |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Journal of Critical Care |
Abbreviated Journal |
Journal of Critical Care |
|
|
Volume |
38 |
Issue |
21 |
Pages |
5952-5961 |
|
|
Keywords |
Instrumentation; Human Health |
|
|
Abstract |
Purpose
To determine the feasibility of continuous recording of sound and light in the intensive care unit (ICU).
Materials and Methods
Four one-hour baseline scenarios in an empty ICU patient room by day and night (doors open or closed and maximal or minimal lighting) and two daytime scenarios simulating a stable and unstable patient (quiet or loud devices and staff) were conducted. Sound and light levels were continuously recorded using a commercially available multisensor monitor and transmitted via the hospital's network to a cloud-based data storage and management system.
Results
The empty ICU room was loud with similar mean sound levels for the day and night simulations of 45â46 dBA. Mean levels for maximal lighting during day and night ranged from 1306â1812 lux and mean levels for minimum lighting were 1â3 lux. The mean sound levels for the stable and unstable patient simulations were 61 and 81 dBA, respectively. The mean light levels were 349 lux for the stable patient and 1947 lux for the unstable patient.
Conclusions
Combined sound and light can be continuously and easily monitored in the ICU setting. Incorporating sound and light monitors in ICU rooms may promote an enhanced patient and staff centered healing environment. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language  |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0883-9441 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
LoNNe @ kyba @ |
Serial |
1614 |
|
Permanent link to this record |