|
Records |
Links |
|
Author |
Kyba, C.C.M.; Bouroussis, C.; Canal-Domingo, R.; Falchi, F.; Giacomelli, A.; Hänel, A.; Kolláth, Z.; Massetti, L.; Ribas, S.J.; Spoelstra, H.; Tong, K.P.; Wuchterl, G. |

|
|
Title |
Report of the 2015 LoNNe Intercomparison Campaign |
Type |
Journal Article |
|
Year |
2015 |
Publication |
|
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
skyglow; instrumentation |
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title  |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
LoNNe @ kyba @; IDA @ john @; GFZ @ kyba @ |
Serial |
1255 |
|
Permanent link to this record |
|
|
|
|
Author |
Blonski, S.; Cao, C. |

|
|
Title |
Suomi NPP VIIRS Reflective Solar Bands Operational Calibration Reprocessing |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Remote Sensing |
Abbreviated Journal |
Remote Sensing |
|
|
Volume |
7 |
Issue |
12 |
Pages |
16131-16149 |
|
|
Keywords |
Instrumentation |
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title  |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2072-4292 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
LoNNe @ kyba @ |
Serial |
1310 |
|
Permanent link to this record |
|
|
|
|
Author |
Rabaza, O.; Aznar-Dols, F.; Mercado-Vargas, M.; Espin-Estrella, A. |

|
|
Title |
A new method of measuring and monitoring light pollution in the night sky |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Lighting Research and Technology |
Abbreviated Journal |
Lighting Research and Technology |
|
|
Volume |
46 |
Issue |
1 |
Pages |
5-19 |
|
|
Keywords |
Instrumentation; all-sky; measurement; modeling; monitoring |
|
|
Abstract |
This paper describes a method of measuring and monitoring light pollution in the night sky. This method is capable of instantly quantifying the levels of artificial radiance and monochromatic luminance of the sky glow by means of a system that includes an all-sky camera as well as several interference filters. The calibration is done with an integrating sphere where the measurement pattern used is obtained from the light reflected from the inner wall of the sphere which comes from radiation emitted by a calibration lamp with a known luminous flux. The inner wall of this sphere is a Lambertian surface, which ensures that the light reflected or falling on it is uniformly dispersed in all directions (i.e. the surface luminance is isotropic). |
|
|
Address |
Ovidio Rabaza Castillo, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingenieria Civil, Campus de Fuentenueva, Universidad de Granada, 18071, Granada, Spain E-mail: ovidio(at)ugr.es |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
SAGE |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title  |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1477-1535 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
IDA @ john @ |
Serial |
1347 |
|
Permanent link to this record |
|
|
|
|
Author |
Qiu, S.; Shao, X.; Cao, C.; Uprety, S. |

|
|
Title |
Feasibility demonstration for calibrating Suomi-National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite day/night band using Dome C and Greenland under moon light |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Journal of Applied Remote Sensing |
Abbreviated Journal |
J. Appl. Remote Sens |
|
|
Volume |
10 |
Issue |
1 |
Pages |
016024 |
|
|
Keywords |
Remote Sensing; Instrumentation |
|
|
Abstract |
The day/night band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar-orbiting Partnership (Suomi-NPP) represents a major advancement in night time imaging capabilities. DNB covers almost seven orders of magnitude in its dynamic range from full sunlight to half-moon. To achieve this large dynamic range, it uses four charge-coupled device arrays in three gain stages. The low gain stage (LGS) gain is calibrated using the solar diffuser. In operations, the medium and high gain stage values are determined by multiplying the gain ratios between the medium gain stage, and LGS, and high gain stage (HGS) and LGS, respectively. This paper focuses on independently verifying the radiometric accuracy and stability of DNB HGS using DNB observations of ground vicarious calibration sites under lunar illumination at night. Dome C in Antarctica in the southern hemisphere and Greenland in the northern hemisphere are chosen as the vicarious calibration sites. Nadir observations of these high latitude regions by VIIRS are selected during perpetual night season, i.e., from April to August for Dome C and from November to January for Greenland over the years 2012 to 2013. Additional selection criteria, such as lunar phase being more than half-moon and no influence of straylight effects, are also applied in data selection. The lunar spectral irradiance model, as a function of SunâEarthâMoon distances and lunar phase, is used to determine the top-of-atmosphere reflectance at the vicarious site. The vicariously derived long-term reflectance from DNB observations agrees with the reflectance derived from Hyperion observations. The vicarious trending of DNB radiometric performance using DOME-C and Greenland under moon light shows that the DNB HGS radiometric variability (relative accuracy to lunar irradiance model and Hyperion observation) is within 8%. Residual variability is also discussed. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title  |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1931-3195 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
LoNNe @ kyba @ |
Serial |
1372 |
|
Permanent link to this record |
|
|
|
|
Author |
Duriscoe, D.M. |

|
|
Title |
Photometric indicators of visual night sky quality derived from all-sky brightness maps |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
JQSRT |
|
|
Volume |
181 |
Issue |
|
Pages |
33-45 |
|
|
Keywords |
Skyglow; Instrumentation |
|
|
Abstract |
Wide angle or fisheye cameras provide a high resolution record of artificial sky glow, which results from the scattering of escaped anthropogenic light by the atmosphere, over the sky vault in the moonless nocturnal environment. Analysis of this record yields important indicators of the extent and severity of light pollution. The following indicators were derived through numerical analysis of all-sky brightness maps: zenithal, average all-sky, median, brightest, and darkest sky brightness. In addition, horizontal and vertical illuminance, resulting from sky brightness were computed. A natural reference condition to which the anthropogenic component may be compared is proposed for each indicator, based upon an iterative analysis of a high resolution natural sky model. All-sky brightness data, calibrated in the V band by photometry of standard stars and converted to luminance, from 406 separate data sets were included in an exploratory analysis. Of these, six locations representing a wide range of severity of impact from artificial sky brightness were selected as examples and examined in detail. All-sky average brightness is the most unbiased indicator of impact to the environment, and is more sensitive and accurate in areas of slight to moderate light pollution impact than zenith brightness. Maximum vertical illuminance provides an excellent indicator of impacts to wilderness character, as does measures of the brightest portions of the sky. Zenith brightness, the workhorse of field campaigns, is compared to the other indicators and found to correlate well with horizontal illuminance, especially at relatively bright sites. The median sky brightness describes a brightness threshold for the upper half of the sky, of importance to telescopic optical astronomy. Numeric indicators, in concert with all-sky brightness maps, provide a complete assessment of visual sky quality at a site. |
|
|
Address |
U.S. National Park Service, Natural Sounds and Night Skies Division, 351 Pacu Lane, Bishop, CA 93514, USA; dan_duriscoe(at)nps.gov |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title  |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
LoNNe @ kyba @ ; IDA @ john @ |
Serial |
1376 |
|
Permanent link to this record |