toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kyba, C.C.M.; Ruhtz, T.; Fischer, J.; Hölker, F. url  doi
openurl 
  Title Red is the new black: how the colour of urban skyglow varies with cloud cover Type Journal Article
  Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Monthly Notices of the Royal Astronomical Society  
  Volume (down) 425 Issue 1 Pages 701-708  
  Keywords Keywords: skyglow; radiative transfer; atmospheric effects; instrumentation: detectors; light pollution  
  Abstract The development of street lamps based on solid-state lighting technology is likely to introduce a major change in the colour of urban skyglow (one form of light pollution). We demonstrate the need for long-term monitoring of this trend by reviewing the influences it is likely to have on disparate fields. We describe a prototype detector which is able to monitor these changes, and could be produced at a cost low enough to allow extremely widespread use. Using the detector, we observed the differences in skyglow radiance in red, green and blue channels. We find that clouds increase the radiance of red light by a factor of 17.6, which is much larger than that for blue (7.1). We also find that the gradual decrease in sky radiance observed on clear nights in Berlin appears to be most pronounced at longer wavelengths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 272  
Permanent link to this record
 

 
Author Bouroussis, C.A.; Topalis, F.V. url  doi
openurl 
  Title Assessment of outdoor lighting installations and their impact on light pollution using unmanned aircraft systems – The concept of the drone-gonio-photometer Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (down) 253 Issue Pages 107155  
  Keywords Instrumentation; Lighting  
  Abstract This paper presents the ongoing work of the lighting laboratory to develop a standardized method for the measurement of several types of lighting installations using unmanned aircraft systems. The technology of unmanned aircraft systems can incorporate multiple types of sensors and can be programmed to fly in predefined areas and routes in order to perform complex measurements with limited human intervention. This technology provides the freedom of measurements from several angular positions and altitudes in a fast, easy, accurate and repeatable way. The overall aim of this work is to assess the lighting installations, not only against the applicable lighting standards but also to investigate and reveal issues related to light pollution and obtrusive lighting. The latter are issues that in most cases are neglected due to the lack of standardized methods of calculation and measurement. Current assessment methods require illuminance or luminance measurements of horizontal and vertical surfaces generally from the ground. The proposed approach provides a holistic three-dimensional evaluation of the lighting installations beyond the common methods and geometries and opens the discussion for future update of the relevant standards on outdoor lighting. In the scope of this paper, several proof-of-concept cases are presented.  
  Address Lighting Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, 15780, Zografou, Athens, Greece; bouroussis(at)gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2996  
Permanent link to this record
 

 
Author Kolláth, Z.; Cool, A.; Jechow, A.; Kolláth, K.; Száz, D.; Tong, K.P. url  doi
openurl 
  Title Introducing the Dark Sky Unit for multi-spectral measurement of the night sky quality with commercial digital cameras Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (down) 253 Issue Pages 107162  
  Keywords Skyglow; Instrumentation; Measurement; light pollution; Radiometry  
  Abstract Multi-spectral imaging radiometry of the night sky provides essential information on light pollution (skyglow) and sky quality. However, due to the different spectral sensitivity of the devices used for light pollution measurement, the comparison of different surveys is not always trivial. In addition to the differences between measurement approaches, there is a strong variation in natural sky radiance due to the changes of airglow. Thus, especially at dark locations, the classical measurement methods (such as Sky Quality Meters) fail to provide consistent results. In this paper, we show how to make better use of the multi-spectral capabilities of commercial digital cameras and show their application for airglow analysis. We further recommend a novel sky quality metric the ”Dark Sky Unit”, based on an easily usable and SI traceable unit. This unit is a natural choice for consistent, digital camera-based measurements. We also present our camera system calibration methodology for use with the introduced metrics.  
  Address ELTE BDPK, Szombathely, Department of Physics, Hungary; zkollath(at)gmail.com  
  Corporate Author Thesis  
  Publisher Elsever Place of Publication Elsevier Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2998  
Permanent link to this record
 

 
Author Li, X.; Levin, N.; Xie, J.; Li, D. url  doi
openurl 
  Title Monitoring hourly night-time light by an unmanned aerial vehicle and its implications to satellite remote sensing Type Journal Article
  Year 2020 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume (down) 247 Issue Pages in press  
  Keywords Remote Sensing; Skyglow; Instrumentation  
  Abstract Satellite-observed night-time light in urban areas has been widely used as an indicator for socioeconomic development and light pollution. Up to present, the diurnal dynamics of city light during the night, which are important to understand the nature of human activity and the underlying variables explaining night-time brightness, have hardly been investigated by remote sensing techniques due to limitation of the revisit time and spatial resolution of available satellites. In this study, we employed a consumer-grade unmanned aerial vehicle (UAV) to monitor city light in a study area located in Wuhan City, China, from 8:08 PM, April 15, 2019 to 5:08 AM, April 16, 2019, with an hourly temporal resolution. By using three ground-based Sky Quality Meters (SQMs), we found that the UAV-recorded light brightness was consistent with the ground luminous intensity measured by the SQMs in both the spatial (R2 = 0.72) and temporal dimensions (R2 > 0.94), and that the average city light brightness was consistent with the sky brightness in the temporal dimension (R2 = 0.98), indicating that UAV images can reliably monitor the city's night-time brightness. The temporal analysis showed that different locations had different patterns of temporal changes in their night-time brightness, implying that inter-calibration of two kinds of satellite images with different overpass times would be a challenge. Combining an urban function map of 18 classes and the hourly UAV images, we found that urban functions differed in their temporal light dynamics. For example, the outdoor sports field lost 97.28% of its measured brightness between 8: 08 PM – 4:05 AM, while an administrative building only lost 4.56%, and the entire study area lost 61.86% of its total brightness. Within our study area, the period between 9:06 PM and 10:05 PM was the period with largest amount of light loss. The spectral analysis we conducted showed that city light colors were different in some urban functions, with the major road being the reddest region at 8:08 PM and becoming even redder at 4:05 AM. This preliminary study indicates that UAVs are a good tool to investigate city light at night, and that city light is very complex in both of the temporal and spatial dimensions, requiring comprehensive investigation using more advanced UAV techniques, and emphasizing the need for geostationary platforms for night-time light sensors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3014  
Permanent link to this record
 

 
Author Zheng, Q.; Weng, Q.; Wang, K. url  doi
openurl 
  Title Correcting the Pixel Blooming Effect (PiBE) of DMSP-OLS nighttime light imagery Type Journal Article
  Year 2020 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume (down) 240 Issue Pages 111707  
  Keywords *instrumentation; Remote Sensing  
  Abstract In the last two decades, the advance in nighttime light (NTL) remote sensing has fueled a surge in extensive research towards mapping human footprints. Nevertheless, the full potential of NTL data is largely constrained by the blooming effect. In this study, we propose a new concept, the Pixel Blooming Effect (PiBE), to delineate the mutual influence of lights from a pixel and its neighbors, and an integrated framework to eliminate the PiBE in radiance calibrated DMSP-OLS datasets (DMSPgrc). First, lights from isolated gas flaring sources and a Gaussian model were used to model how the PiBE functions on each pixel through point spread function (PSF). Second, a two-stage deblurring approach (TSDA) was developed to deconvolve DMSPgrc images with Tikhonov regularization to correct the PiBE and reconstruct PiBE-free images. Third, the proposed framework was assessed by synthetic data and VIIRS imagery and by testing the resulting image with two applications. We found that high impervious surface fraction pixels (ISF > 0.6) were impacted by the highest absolute magnitude of PiBE, whereas NTL pattern of low ISF pixels (ISF < 0.2) was more sensitive to the PiBE. By using TSDA the PiBE in DMSPgrc images was effectively corrected which enhanced data variation and suppressed pseudo lights from non-built-up pixels in urban areas. The reconstructed image had the highest similarity to reference data from synthetic image (SSIM = 0.759) and VIIRS image (r = 0.79). TSDA showed an acceptable performance for linear objects (width > 1.5 km) and circular objects (radius > 0.5 km), and for NTL data with different noise levels (<0.6σ). In summary, the proposed framework offers a new opportunity to improve the quality of DMSP-OLS images and subsequently will be conducive to NTL-based applications, such as mapping urban extent, estimating socioeconomic variables, and exploring eco-impact of artificial lights.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2940  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: