toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Joachim, L.; Storch, T. url  doi
openurl 
  Title Cloud Detection For Night-Time Panchromatic Visible And Near-Infrared Satellite Imagery Type Journal Article
  Year (down) 2020 Publication ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences Abbreviated Journal ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.  
  Volume V-2-2020 Issue Pages 853-860  
  Keywords Instrumentation; Remote Sensing  
  Abstract Cloud detection for night-time panchromatic visible and near-infrared (VNIR) satellite imagery is typically performed based on synchronized observations in the thermal infrared (TIR). To be independent of TIR and to improve existing algorithms, we realize and analyze cloud detection based on VNIR only, here NPP/VIIRS/DNB observations. Using Random Forest for classifying cloud vs. clear and focusing on urban areas, we illustrate the importance of features describing a) the scattering by clouds especially over urban areas with their inhomogeneous light emissions and b) the normalized differences between Earth’s surface and cloud albedo especially in presence of Moon illumination. The analyses substantiate the influences of a) the training site and scene selections and b) the consideration of single scene or multi-temporal scene features on the results for the test sites. As test sites, diverse urban areas and the challenging land covers ocean, desert, and snow are considered. Accuracies of up to 85% are achieved for urban test sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2194-9050 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3064  
Permanent link to this record
 

 
Author Maksimainen, M.; Vaaja, M.T.; Kurkela, M.; Virtanen, J.-P.; Julin, A.; Jaalama, K.; Hyyppä, H. url  doi
openurl 
  Title Nighttime Mobile Laser Scanning and 3D Luminance Measurement: Verifying the Outcome of Roadside Tree Pruning with Mobile Measurement of the Road Environment Type Journal Article
  Year (down) 2020 Publication ISPRS International Journal of Geo-Information Abbreviated Journal Ijgi  
  Volume 9 Issue 7 Pages 455  
  Keywords Lighting; Plants; Instrumentation  
  Abstract Roadside vegetation can affect the performance of installed road lighting. We demonstrate a workflow in which a car-mounted measurement system is used to assess the light-obstructing effect of roadside vegetation. The mobile mapping system (MMS) includes a panoramic camera system, laser scanner, inertial measurement unit, and satellite positioning system. The workflow and the measurement system were applied to a road section of Munkkiniemenranta, Helsinki, Finland, in 2015 and 2019. The relative luminance distribution on a road surface and the obstructing vegetation were measured before and after roadside vegetation pruning applying a luminance-calibrated mobile mapping system. The difference between the two measurements is presented, and the opportunities provided by the mobile 3D luminance measurement system are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2220-9964 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3092  
Permanent link to this record
 

 
Author Spur, M.; Houel, N.; Tourre, V. url  doi
openurl 
  Title Visualizing Multilayered Geospatial Data In Virtual Reality To Assess Public Lighting Type Journal Article
  Year (down) 2020 Publication ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Abbreviated Journal Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.  
  Volume Xliii-B4-2020 Issue Pages 623-630  
  Keywords Lighting; Instrumentation; Vision  
  Abstract With the improvement and proliferation of virtual reality devices, their use for research and professional activity is broadening,fostering the advent of the field of immersive analytics, as is their acceptance among consumers. Other than the heightened sense of immersion into visualized data they provide, they also make displays of much larger apparent size and different positioning practical than what would be possible otherwise. Drawing on these benefits, we implemented a development of Multiple and Coordinated Displays (MCVs) for geovisualization that stacks different layers of data above each other, tilted for legibility. In a formal experiment, we evaluated it and two other, comparable MCV methods implemented in VR for their usefulness in analyzing public perception and soliciting public feedback regarding urban street lighting. In that field, the direction has recently been shifting from purely systemic development to a participatory approach, thus our investigation was into how a system like this could facilitate participation that can yield actionable results. Previous analysis of interaction data and usability questionnaires reveals preferences for certain systems depending on user characteristics, with the stack system showing a slight advantage over a grid of layers and especially over temporal multiplexing. We show that regardless of MCV variation, participants were able to analyze and provide feedback on public lighting situations that can directly contribute to urbanist work. The MCV approach further aided in understanding their choices, as eye-tracking allowed us to analyze attention to individual data layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2194-9034 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3105  
Permanent link to this record
 

 
Author Kolláth, Z.; Száz, D.; Tong, K.P.; Kolláth, K. url  doi
openurl 
  Title The Colour of the Night Sky Type Journal Article
  Year (down) 2020 Publication Journal of Imaging Abbreviated Journal J. Imaging  
  Volume 6 Issue 9 Pages 90  
  Keywords Skyglow; Natural light; Instrumentation  
  Abstract The measurement of night sky quality has become an important task in night sky conservation. Modern measurement techniques involve mainly a calibrated digital camera or a spectroradiometer. However, panchromatic devices are still prevalent to this day, even in the absence of determining the spectral information of the night sky. In the case of multispectral measurements, colour information is currently presented in multiple ways. One of the most frequently used metrics is correlated colour temperature (CCT), which is not without its limitation for the purpose of describing especially the colour of natural night sky. Moreover, visually displaying the colour of the night sky in a quantitatively meaningful way has not attracted sufficient attention in the community of astronomy and light pollution research—most photographs of the night sky are post-processed in a way for aesthetic attractiveness rather than accurate representation of the night sky. The spectrum of the natural night sky varies in a wide range depending on solar activity and atmospheric properties. The most noticeable variation in the visible range is the variation of the atomic emission lines, primarily the green oxygen and orange sodium emission. Based on the accepted models of night sky emission, we created a random spectral database which represents the possible range of night sky radiance distribution. We used this spectral database as a learning set, to create a colour transformation between different colour spaces. The spectral sensitivity of some digital cameras is also used to determine an optimal transformation matrix from camera defined coordinates to real colours. The theoretical predictions were extended with actual spectral measurements in order to test the models and check the local constituents of night sky radiance. Here, we present an extended modelling of night sky colour and recommendations of its consistent measurement, as well as methods of visualising the colour of night sky in a consistent way, namely using the false colour enhancement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2313-433X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3120  
Permanent link to this record
 

 
Author Zou, C.-Z.; Zhou, L.; Lin, L.; Sun, N.; Chen, Y.; Flynn, L.E.; Zhang, B.; Cao, C.; Iturbide-Sanchez, F.; Beck, T.; Yan, B.; Kalluri, S.; Bai, Y.; Blonski, S.; Choi, T.; Divakarla, M.; Gu, Y.; Hao, X.; Li, W.; Liang, D.; Niu, J.; Shao, X.; Strow, L.; Tobin, D.C.; Tremblay, D.; Uprety, S.; Wang, W.; Xu, H.; Yang, H.; Goldberg, M.D. url  doi
openurl 
  Title The Reprocessed Suomi NPP Satellite Observations Type Journal Article
  Year (down) 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 12 Issue 18 Pages 2891  
  Keywords Instrumentation; Remote Sensing  
  Abstract The launch of the National Oceanic and Atmospheric Administration (NOAA)/ National Aeronautics and Space Administration (NASA) Suomi National Polar-orbiting Partnership (S-NPP) and its follow-on NOAA Joint Polar Satellite Systems (JPSS) satellites marks the beginning of a new era of operational satellite observations of the Earth and atmosphere for environmental applications with high spatial resolution and sampling rate. The S-NPP and JPSS are equipped with five instruments, each with advanced design in Earth sampling, including the Advanced Technology Microwave Sounder (ATMS), the Cross-track Infrared Sounder (CrIS), the Ozone Mapping and Profiler Suite (OMPS), the Visible Infrared Imaging Radiometer Suite (VIIRS), and the Clouds and the Earth’s Radiant Energy System (CERES). Among them, the ATMS is the new generation of microwave sounder measuring temperature profiles from the surface to the upper stratosphere and moisture profiles from the surface to the upper troposphere, while CrIS is the first of a series of advanced operational hyperspectral sounders providing more accurate atmospheric and moisture sounding observations with higher vertical resolution for weather and climate applications. The OMPS instrument measures solar backscattered ultraviolet to provide information on the concentrations of ozone in the Earth’s atmosphere, and VIIRS provides global observations of a variety of essential environmental variables over the land, atmosphere, cryosphere, and ocean with visible and infrared imagery. The CERES instrument measures the solar energy reflected by the Earth, the longwave radiative emission from the Earth, and the role of cloud processes in the Earth’s energy balance. Presently, observations from several instruments on S-NPP and JPSS-1 (re-named NOAA-20 after launch) provide near real-time monitoring of the environmental changes and improve weather forecasting by assimilation into numerical weather prediction models. Envisioning the need for consistencies in satellite retrievals, improving climate reanalyses, development of climate data records, and improving numerical weather forecasting, the NOAA/Center for Satellite Applications and Research (STAR) has been reprocessing the S-NPP observations for ATMS, CrIS, OMPS, and VIIRS through their life cycle. This article provides a summary of the instrument observing principles, data characteristics, reprocessing approaches, calibration algorithms, and validation results of the reprocessed sensor data records. The reprocessing generated consistent Level-1 sensor data records using unified and consistent calibration algorithms for each instrument that removed artificial jumps in data owing to operational changes, instrument anomalies, contaminations by anomaly views of the environment or spacecraft, and other causes. The reprocessed sensor data records were compared with and validated against other observations for a consistency check whenever such data were available. The reprocessed data will be archived in the NOAA data center with the same format as the operational data and technical support for data requests. Such a reprocessing is expected to improve the efficiency of the use of the S-NPP and JPSS satellite data and the accuracy of the observed essential environmental variables through either consistent satellite retrievals or use of the reprocessed data in numerical data assimilations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3200  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: