toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Agbo David, O., Madukwe Chinaza, A., & Anyalewechi Chika, J. url  doi
openurl 
  Title Development of Solar Power Intelligent Street Lights System Type Journal Article
  Year 2019 Publication International Journal of Scientific and Research Publications Abbreviated Journal  
  Volume 9 Issue 6 Pages  
  Keywords Lighting; Energy  
  Abstract The lack of natural light during night time in the urban environment has always been a problem. From people not being able to see where they are going, to the greater chance of being attacked or mugged at night which as we all know is a problem that has been in existence since humans started living together. The main advantage of this system exists in the reduction of costs related to energy consumption by the street light by integrating a vehicle/human detection algorithm into the system. The introduction of this vehicle/human detection algorithm further reduces the power consumption costs. In this project, solar PV is used to supply the energy to charge the battery. The battery later powers the operation of the whole system. The 12- 17V of the solar is buck to a steady 12V for battery charging. A light sensor is connected to the microcontroller that sense the light during day time, when the presence of day light is sensed the microcontroller turns ON the mosfet of the buck converter. If the voltage of the solar PV is greater than 12V, it charges the battery and switches off the load transistor. But at dawn, when the solar PV voltage is less than 12V the microcontroller turn OFF the buck converter mosfet and switch ON the load transistor. When no vehicle or human is detected for 10mins the microcontroller dims the LED lamp. If vehicle or human is detected the microcontroller brighten the LED lamp and inform the next microcontroller to brighten its LED lamp. If the next street light did not detect a vehicle or human after 10 mins it dims the lamp but if it detects a vehicle or human the lamp remain brightened. The microcontroller uses the ultrasonic sensor to detect object and the PIR sensor to detect human. The RF module is used for communication between the microcontrollers to inform each other the presence of vehicle or human.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2971  
Permanent link to this record
 

 
Author (up) Ali A.A.S., Zakaria S.A., Guan A.C.K., Shun C.J. url  doi
openurl 
  Title Lighting for Heritage Building: A Case Study of the Lighting Design Applied on St. George’s Church in George Town, Penang Island Type Journal Article
  Year 2020 Publication Awang M., Meor M Fared M. (eds) ICACE 2019. Lecture Notes in Civil Engineering Abbreviated Journal  
  Volume 59 Issue Pages 113-119  
  Keywords Lighting  
  Abstract Light is one of the critical aspects of architecture, yet it is one of the understated elements in our daily lives. Light has a significant spot to form events, activities, and memories. Scientific studies have shown that appropriate and proper lighting does not only affect human health but daily human moods as well. Nowadays, lighting fixtures play essential roles in architecture and markets. A proper lighting fixture helps to highlight the structure, textures, and form of the shape of a building. However, the designers tend to focus more on the art aesthetics rather than the conservation ethics, such as the colorful design and the attractive lighting fixtures on the building, while the prime concern should be on realizing the impact of the lighting fixture toward the environment. The objectives of this study are to highlight the issues of the lighting system of the heritage building and suggest some recommendations to meet the requirements for the heritage building for better lighting design. The data for this research was collected using the quantitative method. Thus, as a result, it is found out that lighting design highlights the historical building, and therefore, attracts tourists, which benefit the economy. However, improper lighting installation leads to a negative impact on the society and human health.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2950  
Permanent link to this record
 

 
Author (up) Amano, T.; Ripperger, J.A.; Albrecht, U. url  doi
openurl 
  Title Changing the light schedule in late pregnancy alters birth timing in mice Type Journal Article
  Year 2020 Publication Theriogenology Abbreviated Journal Theriogenology  
  Volume in press Issue Pages  
  Keywords Animals  
  Abstract In rats, birth timing is affected by changes in the light schedule until the middle of the pregnancy period. This phenomenon can be used to control birth timing in the animal industry and/or clinical fields. However, changes in the light schedule until the middle of the pregnancy period can damage the fetus by affecting the development of the major organs. Thus, we compared birth timing in mice kept under a 12-h light/12-h darkness schedule (L/D) throughout pregnancy with that of mice kept under a light schedule that changed from L/D to constant light (L/L) or constant darkness (D/D) from day 17.5 of pregnancy, the latter phase of the pregnancy period. On average, the pregnancy period was longer in D/D mice (19.9 days) than L/L or L/D mice (19.5 and 19.3 days, respectively, P < 0.05), confirming that light schedule affects birth timing. The average number of newborns was the same in L/L, L/D, and D/D mice (7.5, 7.8, and 7.9, respectively), but the average newborn weight of L/L mice (1.3 g) was lower than that of L/D and D/D mice (both 1.4 g, P < 0.05), indicating that constant light has detrimental effects on fetus growth. However, the percentage of dead newborns was the same between L/L, L/D, and D/D mice (11.1, 10.6, and 3.6%, respectively). The serum progesterone level on day 18.5 of pregnancy in L/D mice was 42.8 ng/ml, lower (P < 0.05) than that of D/D mice (65.3 ng/ml), suggesting that light schedule affects luteolysis. The average pregnancy period of mice lacking a circadian clock kept under D/D conditions from day 17.5 of pregnancy (KO D/D) (20.3 days) was delayed compared with wild-type (WT) D/D mice (P < 0.05). However, the average number of newborns, percentage of births with dead pups, and weight per newborn of KO D/D mice (7.6, 3.6%, and 1.4 g, respectively) were the same as WT mice kept under D/D conditions. A direct effect of the circadian clock on the mechanism(s) regulating birth timing was questionable, as the lighter average weight per KO fetus (0.6 g) versus WT fetus (0.7 g) on day 17.5 of pregnancy might have caused the delay in birth. The range of birth timing in KO D/D mice was the same as that of WT D/D mice, indicating that the circadian clock does not concentrate births at one time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093691X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2943  
Permanent link to this record
 

 
Author (up) Andreatta, G.; Tessmar-Raible, K. url  doi
openurl 
  Title The still dark side of the moon: molecular mechanisms of lunar-controlled rhythms and clocks Type Journal Article
  Year 2020 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume in press Issue Pages  
  Keywords Review; Animals; Hormones; Lunar rhythms; Physiology; Proteome; Transcriptome  
  Abstract Starting with the beginning of the last century, a multitude of scientific studies has documented that the lunar cycle times behaviors and physiology in many organisms. It is plausible that even the first life forms adapted to the different rhythms controlled by the moon. Consistently, many marine species exhibit lunar rhythms, and also the number of documented “lunar-rhythmic” terrestrial species is increasing. Organisms follow diverse lunar geophysical/astronomical rhythms, which differ significantly in terms of period length: from hours (circalunidian and circatidal rhythms) to days (circasemilunar and circalunar cycles). Evidence for internal circatital and circalunar oscillators exists for a range of species based on past behavioral studies, but those species with well-documented behaviorally free-running lunar rhythms are not typically used for molecular studies. Thus, the underlying molecular mechanisms are largely obscure: the dark side of the moon. Here we review findings which start to connect molecular pathways with moon-controlled physiology and behaviors. The present data indicate connections between metabolic/endocrine pathways and moon-controlled rhythms, as well as interactions between circadian and circatidal/circalunar rhythms. Moreover, recent high-throughput analyses provide useful leads towards pathways, as well as molecular markers. However, for each interpretation it is important to carefully consider the – partly substantially differing – conditions used in each experimental paradigm. In the future, it will be important to use lab experiments to delineate the specific mechanisms of the different solar- and lunar-controlled rhythms, but to also start integrating them together, as life has evolved equally long under rhythms of both sun and moon.  
  Address Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna; Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna. Electronic address: kristin.tessmar@mfpl.ac.at  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32198116 Approved no  
  Call Number GFZ @ kyba @ Serial 2865  
Permanent link to this record
 

 
Author (up) Atchoi, E.; Mitkus, M.; Rodríguez, A. url  doi
openurl 
  Title Is seabird light‐induced mortality explained by the visual system development? Type Journal Article
  Year 2020 Publication Conservation Science and Practice Abbreviated Journal Conservat Sci and Prac  
  Volume in press Issue Pages  
  Keywords Animals  
  Abstract Seabirds are impacted by coastal light pollution, leading to massive mortality events. Juveniles comprise the majority of affected individuals, while adults are only seldom grounded and reported in rescue programs. We propose a connection between visual system development of burrow nesting seabirds and the observed higher vulnerability to light pollution by a specific age group. We illustrate the need for multidisciplinary research to better understand and further mitigate light-induced mortality.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2578-4854 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2845  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: