|
Records |
Links |
|
Author |
Bará, S.; Escofet, J. |

|
|
Title |
On lamps, walls, and eyes: The spectral radiance field and the evaluation of light pollution indoors |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
J of Quant Spect and Rad Trans |
|
|
Volume |
205 |
Issue |
|
Pages |
267-277 |
|
|
Keywords |
Instrumentation; Light pollution; Artificial light at night; Light field; Radiance field; Radiometry; Photometry |
|
|
Abstract |
Light plays a key role in the regulation of different physiological processes, through several visual and non-visual retinal phototransduction channels whose basic features are being unveiled by recent research. The growing body of evidence on the significance of these effects has sparked a renewed interest in the determination of the light field at the entrance pupil of the eye in indoor spaces. Since photic interactions are strongly wavelength-dependent, a significant effort is being devoted to assess the relative merits of the spectra of the different types of light sources available for use at home and in the workplace. The spectral content of the light reaching the observer eyes in indoor spaces, however, does not depend exclusively on the sources: it is partially modulated by the spectral reflectance of the walls and surrounding surfaces, through the multiple reflections of the light beams along all possible paths from the source to the observer. This modulation can modify significantly the non-visual photic inputs that would be produced by the lamps alone, and opens the way for controlling—to a certain extent—the subject's exposure to different regions of the optical spectrum. In this work we evaluate the expected magnitude of this effect and we show that, for factorizable sources, the spectral modulation can be conveniently described in terms of a set of effective filter-like functions that provide useful insights for lighting design and light pollution assessment. The radiance field also provides a suitable bridge between indoor and outdoor light pollution studies. |
|
|
Address |
Área de Óptica, Departamento de Física Aplicada, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved  |
no |
|
|
Call Number |
IDA @ john @ |
Serial |
2163 |
|
Permanent link to this record |
|
|
|
|
Author |
Jechow, A.; Ribas, S.J.; Domingo, R.C.; Hölker, F.; Kolláth, Z.; Kyba, C.C.M. |

|
|
Title |
Tracking the dynamics of skyglow with differential photometry using a digital camera with fisheye lens |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
Journal of Quantitative Spectroscopy and Radiative Transfer |
|
|
Volume |
209 |
Issue |
|
Pages |
212-223 |
|
|
Keywords |
Skyglow; Instrumentation |
|
|
Abstract |
rtificial skyglow is dynamic due to changing atmospheric conditions and the switching on and off of artificial lights throughout the night. Street lights as well as the ornamental illumination of historical sites and buildings are sometimes switched off at a certain time to save energy. Ornamental lights in particular are often directed upwards, and can therefore have a major contribution towards brightening of the night sky. Here we use differential photometry to investigate the change in night sky brightness and illuminance during an automated regular switch-off of ornamental light in the town of Balaguer and an organized switch-off of all public lights in the village of Àger, both near Montsec Astronomical Park in Spain. The sites were observed during two nights with clear and cloudy conditions using a DSLR camera and a fisheye lens. A time series of images makes it possible to track changes in lighting conditions and sky brightness simultaneously. During the clear night, the ornamental lights in Balaguer contribute over 20% of the skyglow at zenith at the observational site. Furthermore, we are able to track very small changes in the ground illuminance on a cloudy night near Àger. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved  |
no |
|
|
Call Number |
LoNNe @ kyba @ |
Serial |
1807 |
|
Permanent link to this record |
|
|
|
|
Author |
Ges, X.; Bará, S.; García-Gil, M.; Zamorano, J.; Ribas, S.J.; Masana, E. |

|
|
Title |
Light pollution offshore: Zenithal sky glow measurements in the mediterranean coastal waters |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
Journal of Quantitative Spectroscopy and Radiative Transfer |
|
|
Volume |
210 |
Issue |
|
Pages |
91-100 |
|
|
Keywords |
|
|
|
Abstract |
Light pollution is a worldwide phenomenon whose consequences for the natural environment and the human health are being intensively studied nowadays. Most published studies address issues related to light pollution inland. Coastal waters, however, are spaces of high environmental interest, due to their biodiversity richness and their economical significance. The elevated population density in coastal regions is accompanied by correspondingly large emissions of artificial light at night, whose role as an environmental stressor is increasingly being recognized. Characterizing the light pollution levels in coastal waters is a necessary step for protecting these areas. At the same time, the marine surface environment provides a stage free from obstacles for measuring the dependence of the skyglow on the distance to the light polluting sources, and validating (or rejecting) atmospheric light propagation models. In this work we present a proof-of-concept of a gimbal measurement system that can be used for zenithal skyglow measurements on board both small boats and large vessels under actual navigation conditions. We report the results obtained in the summer of 2016 along two measurement routes in the Mediterranean waters offshore Barcelona, travelling 9 and 31.7 km away from the coast. The atmospheric conditions in both routes were different from the ones assumed for the calculation of recently published models of the anthropogenic sky brightness. They were closer in the first route, whose results approach better the theoretical predictions. The results obtained in the second route, conducted under a clearer atmosphere, showed systematic differences that can be traced back to two expected phenomena, which are a consequence of the smaller aerosol content: the reduction of the anthropogenic sky glow at short distances from the sources, and the slower decay rate of brightness with distance, which gives rise to a relative excess of brightness at large distances from the coastline. |
|
|
Address |
Departament de Projectes d'Enginyeria i la Construcció, Universitat Politècnica de Catalunya/BARCELONATECH, Barcelona, Spain; salva.bara(at)usc.es |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevierier |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved  |
no |
|
|
Call Number |
IDA @ john @ |
Serial |
1816 |
|
Permanent link to this record |
|
|
|
|
Author |
Aubé, M.; Simoneau, A. |

|
|
Title |
New features to the night sky radiance model illumina: Hyperspectral support, improved obstacles and cloud reflection |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
Journal of Quantitative Spectroscopy and Radiative Transfer |
|
|
Volume |
211 |
Issue |
|
Pages |
25-34 |
|
|
Keywords |
|
|
|
Abstract |
Illumina is one of the most physically detailed artificial night sky brightness model to date. It has been in continuous development since 2005 [1]. In 2016–17, many improvements were made to the Illumina code including an overhead cloud scheme, an improved blocking scheme for subgrid obstacles (trees and buildings), and most importantly, a full hyperspectral modeling approach. Code optimization resulted in significant reduction in execution time enabling users to run the model on standard personal computers for some applications.
After describing the new schemes introduced in the model, we give some examples of applications for a peri-urban and a rural site both located inside the International Dark Sky reserve of Mont-Mégantic (QC, Canada). |
|
|
Address |
Cégep de Sherbrooke, 475, rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada; martin.aube(at)cegepsherbrooke.qc.ca |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved  |
no |
|
|
Call Number |
IDA @ john @ |
Serial |
1818 |
|
Permanent link to this record |
|
|
|
|
Author |
Barentine, J.C.; Walker, C.E.; Kocifaj, M.; Kundracik, F.; Juan, A.; Kanemoto, J.; Monrad, C.K. |

|
|
Title |
Skyglow Changes Over Tucson, Arizona, Resulting From A Municipal LED Street Lighting Conversion |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
Journal of Quantitative Spectroscopy and Radiative Transfer |
|
|
Volume |
212 |
Issue |
|
Pages |
10-23 |
|
|
Keywords |
Skyglow; Tucson; Arizona; LED; modeling; radiative transfer; LED |
|
|
Abstract |
The transition from earlier lighting technologies to white light-emitting diodes (LEDs) is a significant change in the use of artificial light at night. LEDs emit considerably more short-wavelength light into the environment than earlier technologies on a per-lumen basis. Radiative transfer models predict increased skyglow over cities transitioning to LED unless the total lumen output of new lighting systems is reduced. The City of Tucson, Arizona (U.S.), recently converted its municipal street lighting system from a mixture of fully shielded high- and low-pressure sodium (HPS/LPS) luminaires to fully shielded 3000 K white LED luminaires. The lighting design intended to minimize increases to skyglow in order to protect the sites of nearby astronomical observatories without compromising public safety. This involved the migration of over 445 million fully shielded HPS/LPS lumens to roughly 142 million fully shielded 3000 K white LED lumens and an expected concomitant reduction in the amount of visual skyglow over Tucson. SkyGlow Simulator models predict skyglow decreases on the order of 10-20% depending on whether fully shielded or partly shielded lights are in use. We tested this prediction using visual night sky brightness estimates and luminance-calibrated, panchromatic all-sky imagery at 15 locations in and near the city. Data were obtained in 2014, before the LED conversion began, and in mid-2017 after approximately 95% of ~18,000 luminaires was converted. Skyglow differed marginally, and in all cases with valid data changed by <±20%. Over the same period, the city’s upward-directed optical radiance detected from Earth orbit decreased by approximately 7%. While these results are not conclusive, they suggest that LED conversions paired with dimming can reduce skyglow over cities. |
|
|
Address |
International Dark-Sky Association, 3223 N 1st Ave, Tucson, AZ, 85719 USA; john(at)darksky.org |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved  |
no |
|
|
Call Number |
IDA @ john @ |
Serial |
1819 |
|
Permanent link to this record |