toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Kolláth, Z.; Dömény, A.; Kolláth, K.; Nagy, B. url  doi
openurl 
  Title Qualifying lighting remodelling in a Hungarian city based on light pollution effects Type Journal Article
  Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 181 Issue Pages 46-51  
  Keywords Skyglow; Lighting  
  Abstract The public lighting system has been remodelled in several Hungarian cities. In some cases the majority of the old luminaries were fitted with high pressure sodium lamps and they were replaced with white LED lighting with a typical correlated colour temperature of about 4500 K. Therefore, these remodelling works provide a testbed for methods in measurements and modelling. We measured the luminance of the light domes of selected cities by DSLR photometry before and after the remodelling.

Thanks to the full cut off design of the new lighting fixtures we obtained a slight decrease even in the blue part of the sky dome spectra of a tested city. However, we have to note that this positive change is the result of the bad geometry (large ULR) of the previous lighting system. Based on Monte Carlo radiative transfer calculations we provide a comparison of different indicators that can be used to qualify the remodelling, and to predict the possible changes in light pollution.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @; GFZ @ kyba @ Serial 1375  
Permanent link to this record
 

 
Author (up) Kolláth, Z.; Kránicz, B. url  doi
openurl 
  Title On the feasibility of inversion methods based on models of urban sky glow Type Journal Article
  Year 2014 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 139 Issue Pages 27-34  
  Keywords Light pollution; Radiative transfer; Light scattering  
  Abstract Multi-wavelength imaging luminance photometry of sky glow provides a huge amount of information on light pollution. However, the understanding of the measured data involves the combination of different processes and data of radiation transfer, atmospheric physics and atmospheric constitution. State-of-the-art numerical radiation transfer models provide the possibility to define an inverse problem to obtain information on the emission intensity distribution of a city and perhaps the physical properties of the atmosphere. We provide numerical tests on the solvability and feasibility of such procedures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 179  
Permanent link to this record
 

 
Author (up) Kotarba, A.Z.; Chacewicz, S.; Żmudzka, E. url  doi
openurl 
  Title Night sky photometry over Warsaw (Poland) evaluated simultaneously with surface-based and satellite-based cloud observations Type Journal Article
  Year 2019 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 235 Issue Pages 95-107  
  Keywords Skyglow  
  Abstract Light pollution is a widely distributed form of anthropogenic pollution that threatens both biodiversity and human health. One of the most popular indicators is known as night sky brightness (NSB), measured with photometric techniques. In the study, we report results of the very first, long-term photometric survey of NSB over Poland's capital, Warsaw, for 636 nights between 2014 and 2016 using a sky quality meter (SQM). Data were collected for all-weather conditions and, for the first time, we simultaneously use two independent sources of cloud amount data: surface-based (SYNOP) and satellite-based (Meteosat/SEVIRI). Results show that Warsaw is significantly polluted by light, with average NSB of 18.65 ± 0.06 magSQM/arcsec2 (15 times higher than unpolluted sky). Zenithal NSB is almost unaffected by moonlight. During astronomical nights, cloud cover was the dominant determinant of NSB, increasing by 7 times for overcast sky. In general, the sky brightened by ∼0.2 magSQM/arcsec2 for each 10% increase in cloud fraction. Satellite-based cloud amount data was found to be a very reliable alternative to traditional SYNOP observations. No statistically significant difference was found for average NSB calculated using satellite and SYNOP datasets. This finding is of particular importance, since the coverage of surface-based data is limited, while satellite observations can be obtained for any location on Earth, and collocate with any NSB photometric station. Our investigation also highlighted that SYNOP data are unreliable when cloud amount is low. This is due to the different fields of view for SQM (20°) and SYNOP (180°) observations of broken cloud.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2580  
Permanent link to this record
 

 
Author (up) Linares, H.; Masana, E.; Ribas, S.J.; Garcia - Gil, M.; Figueras, F.; Aubé, M. url  doi
openurl 
  Title Modelling the night sky brightness and light pollution sources of Montsec protected area Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 217 Issue Pages 178-188  
  Keywords skyglow  
  Abstract We proceeded to the modelling of the night sky brightness of Montsec area (north-east of Spain), an astronomical protected area certified as a Starlight Reserve. We have used the hyperspectral version of ILLUMINA, an artificial sky brightness model. Ground based measurements for Montsec and other areas of Catalonia 0015 ; 0016, including both photometric and spectroscopic data, has been used to fit and evaluate the input parameters of the model. In this first modelling attempt, Lleida, the biggest city in the area, has been considered as the unique source of light pollution. In 2014 there was an update of the lighting infrastructure in Lleida. A detailed comparison of the sky brightness before and after the change is shown in order to measure the effects that different kind of lamps can produce. This information could be used to plan for future updates and improvements of the lighting systems in the area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1923  
Permanent link to this record
 

 
Author (up) Luginbuhl, C.B.; Boley, P.A.; Davis, D.R. url  doi
openurl 
  Title The impact of light source spectral power distribution on sky glow Type Journal Article
  Year 2014 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 139 Issue Pages 21-26  
  Keywords Light pollution; Sky glow; Blue-rich light sources; LED; light emitting diode; lighting  
  Abstract The effect of light source spectral power distribution on the visual brightness of anthropogenic sky glow is described. Under visual adaptation levels relevant to observing the night sky, namely with dark-adapted (scotopic) vision, blue-rich (“white”) sources produce a dramatically greater sky brightness than yellow-rich sources. High correlated color temperature LEDs and metal halide sources produce a visual brightness up to 8× brighter than low-pressure sodium and 3× brighter than high-pressure sodium when matched lumen-for-lumen and observed nearby. Though the sky brightness arising from blue-rich sources decreases more strongly with distance, the visual sky glow resulting from such sources remains significantly brighter than from yellow sources out to the limits of this study at 300 km.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 178  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: