toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Luginbuhl, C.B.; Boley, P.A.; Davis, D.R. url  doi
openurl 
  Title The impact of light source spectral power distribution on sky glow Type Journal Article
  Year 2014 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 139 Issue Pages 21-26  
  Keywords Light pollution; Sky glow; Blue-rich light sources; LED; light emitting diode; lighting  
  Abstract The effect of light source spectral power distribution on the visual brightness of anthropogenic sky glow is described. Under visual adaptation levels relevant to observing the night sky, namely with dark-adapted (scotopic) vision, blue-rich (“white”) sources produce a dramatically greater sky brightness than yellow-rich sources. High correlated color temperature LEDs and metal halide sources produce a visual brightness up to 8× brighter than low-pressure sodium and 3× brighter than high-pressure sodium when matched lumen-for-lumen and observed nearby. Though the sky brightness arising from blue-rich sources decreases more strongly with distance, the visual sky glow resulting from such sources remains significantly brighter than from yellow sources out to the limits of this study at 300 km.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 178  
Permanent link to this record
 

 
Author (up) Massetti, L. url  doi
openurl 
  Title Drivers of artificial light at night variability in urban, rural and remote areas Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume in press Issue Pages  
  Keywords Skyglow  
  Abstract Light pollution generated by the excessive use of artificial light at night is an environmental and ecological concern. Artificial light at night is diffused far from the sources, for long distances by scattering in the atmosphere (skyglow), thus affecting the night sky and the biodiversity of rural and natural areas. The characterization of the level and variability of light pollution has become an important issue for several disciplines.

This study analyzes light pollution in urban, rural and remote sites in Tuscany (Italy) by monitoring night sky brightness. Night sky brightness (NSB) data collected from 2016 to 2019 were analyzed to assess annual and seasonal variability at each site and between sites. The relationship between night sky brightness and moonlight and weather conditions were also analyzed. Trend analysis was also performed to evaluate the degradation of the quality of the measurement with time due to dirty accumulation on the sensor shield.

NSB in Tuscany during moonless nights ranged between 17.3 and 21.8 mpsas. The monthly cycle of moonlight is the main driver of night sky brightness variability in the remote site (21.8 mpsas on moonless nights and 18.5 mpsas on full moon nights) with a slight, but significant darkening effect during rainy conditions (22.3 mpsas). In urban sites, moonlight cycle is almost completely masked by weather conditions, as it can be seen from the analysis of seasonal variability, lunar monthly cycle analysis and weather condition analysis. Average night sky brightness on rainy days might reach 15.4 mpsas (approximately 436 times brighter than the natural background), an intensity that is even higher than average night sky brightness in full moonlight at the same site (16.6 mpsas). Light pollution can reach levels that might affect nocturnal species, and therefore the study of long term variability of light pollution is important for ecological studies.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3069  
Permanent link to this record
 

 
Author (up) Min, M.; Zheng, J.; Zhang, P.; Hu, X.; Chen, L.; Li, X.; Huang, Y.; Zhu, L. url  doi
openurl 
  Title A low-light radiative transfer model for satellite observations of moonlight and earth surface light at night Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume in press Issue Pages 106954  
  Keywords Remote Sensing; Instrumentation  
  Abstract Lunar sun-reflected light can be effectively measured through a low-light band or a day/night band (DNB) implemented on space-based optical sensors. Based on moonlight, nocturnal observations for artificial light sources at night can be achieved. However, to date, an open-sourced and mature Low-Light Radiative Transfer Model (LLRTM) for the further understanding of the radiative transfer problem at night is still unavailable. Therefore, this study develops a new LLRTM at night with the correction of the lunar and active surface light sources. First, the radiative transfer equations with an active surface light source are derived for the calculation based on the lunar spectral irradiance (LSI) model. The simulation from this new LLRTM shows a minimal bias when compared with the discrete ordinates radiative transfer (DISORT) model. The simulated results of radiance and reflectance at the top of the atmosphere (TOA) also show that the surface light source has a remarkable impact on the radiative transfer process. In contrast, the change in the lunar phase angle has minimal influence. Also, comparing with space-based DNB radiance observations, LLRTM shows the potential to simulate space-based low-light imager observations under an effective surface light source condition during the night.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2850  
Permanent link to this record
 

 
Author (up) Netzel, H.; Netzel, P. url  doi
openurl 
  Title High resolution map of light pollution over Poland Type Journal Article
  Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 181 Issue in press Pages 67-73  
  Keywords Skyglow  
  Abstract In 1976 Berry introduced a simple mathematical equation to calculate artificial night sky brightness at zenith. In the original model cities, considered as points with given population, are only sources of light emission. In contrary to Berry׳s model, we assumed that all terrain surface can be a source of light. Emission of light depends on percent of built up area in a given cell. We based on Berry׳s model. Using field measurements and high-resolution data we obtained the map of night sky brightness over Poland in 100-m resolution. High resolution input data, combined with a very simple model, makes it possible to obtain detailed structures of the night sky brightness without complicating the calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1402  
Permanent link to this record
 

 
Author (up) Netzel, H.; Netzel, P. url  doi
openurl 
  Title High-resolution map of light pollution Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 221 Issue Pages 300-308  
  Keywords Skyglow  
  Abstract In 1976 Berry created a very simple model describing artificial night sky brightness due to light emitted by cities. He used several assumptions and simplifications, due to which, map calculated with this model does not properly describes the night sky brightness. Especially, this is the case for highly urbanized areas. We used Berry’s idea, but we changed some assumptions and used very different input data. As in Berry’s approach, we focused on total sky brightness and did not analyze spectral properties of artificial light emission. Resultant map has a resolution of 100 meters, and so far it is the most detailed map of night sky brightness. Moreover we included the shadowing effect, which is very important on mountainous areas. Map is calculated for Poland and for several other places in Europe. We also describe the comparison between calculated values and measurements for different areas in Europe. Also we present comparison between our approach and the new world atlas of artificial night sky brightness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1937  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: