toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ściężor, T. url  doi
openurl 
  Title The impact of clouds on the brightness of the night sky Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume in press Issue Pages (down) 106962  
  Keywords Skyglow  
  Abstract Clouds are a kind of atmospheric factor that most effectively scatters the artificial light coming from the ground. Therefore, they have the most significant impact on the brightness of the night sky. The paper analyses the influence of both the level of cloudiness, as well as the genera of clouds and altitude of its base, on amplifying of the light pollution. The impact of cloudiness on the brightness of the night sky in places with different levels of light pollution was researched. Measurements of meteorological elements were used together with clouds genera assessments. The introduction of an innovative method of identifying some genera of clouds on the base of the all-night continuous measurements of the sky's brightness allowed for a similar analysis in the absence of observational data specifying the genera of clouds.

A linear correlation between the cloudiness and the brightness of the night sky was found. The determined linear correlation parameters allow for specifying the three types of light-polluted areas, possibly related to the density of population. It was found that among the nine genera of the identified night clouds, the Altocumulus, Cirrocumulus, and Cumulonimbus ones are responsible for this correlation. No dependence of the brightness of the night sky on the clouds’ albedo was found. In case of overcast sky, there was a clear relationship between the average altitude of the individual genus of clouds and the brightness of the night sky. Most of the night sky brightness comes from the light scattered on the lowest altitude clouds genera, while the least contribution comes from the light scattered on the high-level clouds. It was also found that at the freezing temperatures, the layer of aerosols forms below the level of the genera Nimbostratus or Stratus. This layer, thickening with the decreasing temperature, additionally scatters the artificial light.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2859  
Permanent link to this record
 

 
Author Min, M.; Zheng, J.; Zhang, P.; Hu, X.; Chen, L.; Li, X.; Huang, Y.; Zhu, L. url  doi
openurl 
  Title A low-light radiative transfer model for satellite observations of moonlight and earth surface light at night Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume in press Issue Pages (down) 106954  
  Keywords Remote Sensing; Instrumentation  
  Abstract Lunar sun-reflected light can be effectively measured through a low-light band or a day/night band (DNB) implemented on space-based optical sensors. Based on moonlight, nocturnal observations for artificial light sources at night can be achieved. However, to date, an open-sourced and mature Low-Light Radiative Transfer Model (LLRTM) for the further understanding of the radiative transfer problem at night is still unavailable. Therefore, this study develops a new LLRTM at night with the correction of the lunar and active surface light sources. First, the radiative transfer equations with an active surface light source are derived for the calculation based on the lunar spectral irradiance (LSI) model. The simulation from this new LLRTM shows a minimal bias when compared with the discrete ordinates radiative transfer (DISORT) model. The simulated results of radiance and reflectance at the top of the atmosphere (TOA) also show that the surface light source has a remarkable impact on the radiative transfer process. In contrast, the change in the lunar phase angle has minimal influence. Also, comparing with space-based DNB radiance observations, LLRTM shows the potential to simulate space-based low-light imager observations under an effective surface light source condition during the night.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2850  
Permanent link to this record
 

 
Author Kocifaj, M. url  doi
openurl 
  Title Ground albedo impacts on higher-order scattering spectral radiances of night sky Type Journal Article
  Year 2019 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 239 Issue Pages (down) 106670  
  Keywords skyglow  
  Abstract The contribution from ground reflected light to the night sky radiance is of increased interest because of constant modernization of street lighting systems that now efficiently eliminate light emissions above the horizontal plane, so the appreciable fraction of artificial light directed upwards is from ground reflection. Diffuse light of a night sky shows a positive correlation with ground albedo (α), but it seems there is no linear trend between α and the night sky brightness (NSB), at least not for all sky elements, and, the mechanism of this relationship becomes even more complicated due to multiple scattering effects. The extent to which the ground reflectance influences the higher-order scattering radiance of night sky, and, the factors that initiate the crossover from single- to multiple-scattering dominance of the sky glow has been virtually unexplored until now.

We demonstrate here that albedo-induced effects in NSB exhibit an angular dependence, with amplitudes enhanced towards shorter wavelengths. For low values of ground reflectance and at short distances from a light source, the second-scattering radiance is found to be only a few percent of the first-order scattering radiance. However, the ratio of a higher- to the first-order scattering radiance gradually increases near horizon, specifically at the side opposite to the azimuthal position of the light source. Also the NSB in blue band has decreasing gradation tendency when increasing the altitude above sea level. The findings in this paper are significant in a proper incorporation of higher-order scattering in modeling the NSB under elevated reflectance conditions, and may be critical for saving computational time.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2679  
Permanent link to this record
 

 
Author Bará, S.; Falchi, F.; Furgoni, R.; Lima, R.C. url  doi
openurl 
  Title Fast Fourier-transform calculation of artificial night sky brightness maps Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 240 Issue Pages (down) 106658  
  Keywords Skyglow; Light pollution; Atmospheric optics; Photometry; Radiometry; Fourier transforms  
  Abstract Light pollution poses a growing threat to optical astronomy, in addition to its detrimental impacts on the natural environment, the intangible heritage of humankind related to the contemplation of the starry sky and, potentially, on human health. The computation of maps showing the spatial distribution of several light pollution related functions (e.g. the anthropogenic zenithal night sky brightness, or the average brightness of the celestial hemisphere) is a key tool for light pollution monitoring and control, providing the scientific rationale for the adoption of informed decisions on public lighting and astronomical site preservation. The calculation of such maps from satellite radiance data for wide regions of the planet with sub-kilometric spatial resolution often implies a huge amount of basic pixel operations, requiring in many cases extremely large computation times. In this paper we show that, using adequate geographical projections, a wide set of light pollution map calculations can be reframed in terms of two-dimensional convolutions that can be easily evaluated using conventional fast Fourier-transform (FFT) algorithms, with typical computation times smaller than 10^-6 s per output pixel.  
  Address Departamento de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2782  
Permanent link to this record
 

 
Author Wallner, S.; Kocifaj, M. url  doi
openurl 
  Title Impacts of surface albedo variations on the night sky brightness – A numerical and experimental analysis Type Journal Article
  Year 2019 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 239 Issue Pages (down) 106648  
  Keywords Skyglow; albedo; surface albedo; Sky Quality Meter; Austria; Europe  
  Abstract The aim of this paper is to analyze surface albedo impacts on artificial night sky brightness at zenith. The way in which these parameters correlate with each other is analyzed numerically and then experimentally by Sky Quality Meters (SQMs) in the city of Linz, Austria between 2016 and 2018. Three SQMs are located in city areas that differ in ground type, while other two are installed outside but near the city. To eliminate systematic errors of different SQMs or a missing inter-calibration of all devices, we examine relative change in zenithal brightness instead of its absolute values. However, the ground albedo not only depends on the ground type, but also shows seasonal variation most often driven by vegetation and environmental change. To understand these changes, we use SkyGlow simulator to perform numerical experiments on four different albedo models. The results have proven that seasonal variations are clearly visible as green city parts become darker around autumn and ratios to urban located SQMs increase. We show that there is a major difference in simulation results if either conducting city parts with various surface albedos or using only one averaged value over the whole city. The latter produces worse fit to the observed SQM data, implying that a use of various surface albedos is a need when modelling zenithal brightness in artificially lit areas of a city or town. Also, the seasonal changes of surface albedo cannot be neglected and the parameter itself must be included in the modelling tools.  
  Address Department of Astrophysics, University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria; stefan.wallner(at)univie.ac.at  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2675  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: