toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kocifaj, M. url  doi
openurl 
  Title Night sky luminance under clear sky conditions: Theory vs. experiment Type Journal Article
  Year 2014 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 139 Issue Pages (down) 43-51  
  Keywords Sky glow; Luminance; Luminaire; City emission function; Anthropogenic; Single scattering; Inverse problems  
  Abstract Sky glow is caused by both natural phenomena and factors of anthropogenic origin, and of the latter ground-based light sources are the most important contributors for they emit the spatially linked spectral radiant intensity distribution of artificial light sources, which are further modulated by local atmospheric optics and perceived as the diffuse light of a night sky. In other words, sky glow is closely related to a city's shape and pattern of luminaire distribution, in practical effect an almost arbitrary deployment of random orientation of heterogeneous electrical light sources. Thus the luminance gradation function measured in a suburban zone or near the edges of a city is linked to the City Pattern or vice versa.

It is shown that clear sky luminance/radiance data recorded in an urban area can be used to retrieve the bulk luminous/radiant intensity distribution if some a-priori information on atmospheric aerosols is available. For instance, the single scattering albedo of aerosol particles is required under low turbidity conditions, as demonstrated on a targeted experiment in the city of Frýdek-Mistek. One of the main advantages of the retrieval method presented in this paper is that the single scattering approximation is satisfactorily accurate in characterizing the light field near the ground because the dominant contribution to the sky glow has originated from beams propagated along short optical paths.
 
  Address ICA, Slovak Academy of Sciences, Dúbravská Road 9, 845 03 Bratislava, Slovakia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 181  
Permanent link to this record
 

 
Author Kocifaj, M. url  doi
openurl 
  Title Modeling the night-sky radiances and inversion of multi-angle and multi-spectral radiance data Type Journal Article
  Year 2014 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 139 Issue Pages (down) 35-42  
  Keywords Sky-glow; Light pollution; Aerosols; Light scattering; Inverse problems  
  Abstract Information on a city's emission pattern is crucial for any reasonable predictions of night sky radiances. Unfortunately, the bulk radiant intensity distribution as a function of zenith angle is scarcely available for any city throughout the world. Even if the spatial arrangements of urban light fixtures and lamp specifications are known, the cumulative effect on upwardly directed beams is difficult to determine; due to heterogeneity of the ambient environment, reflectance from ground surfaces, arbitrarily scattered obstacles, orography of terrain and many other site specific factors.

The present paper develops a theoretical model and a numerical technique applicable to the retrieval of a City Emission Function (CEF) from the spectral sky radiances measured under clear sky conditions. Mathematically it is an inverse problem that is solved using a regularization algorithm in which the minimization routines penalize non-smooth solutions and the radiant intensity pattern is found subject to regularizing constraints.

When spectral sky radiances are measured at a set of discrete wavelengths or at a set of discrete distances from the monitored light source, both the aerosol optical properties and the CEF can be determined concurrently. One great advantage of this approach is that no a-priori assumptions need to be made concerning aerosol properties, such as aerosol optical depth.

The numerical experiment on synthetically generated city emissions' patterns has proven the functionality of the method presented.
 
  Address ICA, Slovak Academy of Sciences, Dúbravská Road 9, 845 03 Bratislava, Slovakia.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 180  
Permanent link to this record
 

 
Author Duriscoe, D.M. url  doi
openurl 
  Title Photometric indicators of visual night sky quality derived from all-sky brightness maps Type Journal Article
  Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT  
  Volume 181 Issue Pages (down) 33-45  
  Keywords Skyglow; Instrumentation  
  Abstract Wide angle or fisheye cameras provide a high resolution record of artificial sky glow, which results from the scattering of escaped anthropogenic light by the atmosphere, over the sky vault in the moonless nocturnal environment. Analysis of this record yields important indicators of the extent and severity of light pollution. The following indicators were derived through numerical analysis of all-sky brightness maps: zenithal, average all-sky, median, brightest, and darkest sky brightness. In addition, horizontal and vertical illuminance, resulting from sky brightness were computed. A natural reference condition to which the anthropogenic component may be compared is proposed for each indicator, based upon an iterative analysis of a high resolution natural sky model. All-sky brightness data, calibrated in the V band by photometry of standard stars and converted to luminance, from 406 separate data sets were included in an exploratory analysis. Of these, six locations representing a wide range of severity of impact from artificial sky brightness were selected as examples and examined in detail. All-sky average brightness is the most unbiased indicator of impact to the environment, and is more sensitive and accurate in areas of slight to moderate light pollution impact than zenith brightness. Maximum vertical illuminance provides an excellent indicator of impacts to wilderness character, as does measures of the brightest portions of the sky. Zenith brightness, the workhorse of field campaigns, is compared to the other indicators and found to correlate well with horizontal illuminance, especially at relatively bright sites. The median sky brightness describes a brightness threshold for the upper half of the sky, of importance to telescopic optical astronomy. Numeric indicators, in concert with all-sky brightness maps, provide a complete assessment of visual sky quality at a site.  
  Address U.S. National Park Service, Natural Sounds and Night Skies Division, 351 Pacu Lane, Bishop, CA 93514, USA; dan_duriscoe(at)nps.gov  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ ; IDA @ john @ Serial 1376  
Permanent link to this record
 

 
Author Ayuga, C.E.T.; Zamorano, J. url  doi
openurl 
  Title LICA AstroCalc, a software to analyze the impact of artificial light: Extracting parameters from the spectra of street and indoor lamps Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 214 Issue Pages (down) 33-38  
  Keywords Vision; Lighting; Instrumentation  
  Abstract The night sky spectra of light-polluted areas is the result of the artificial light scattered back from the atmosphere and the reemission of the light after reflections in painted surfaces. This emission comes mainly from street and decorative lamps. We have built an extensive database of lamps spectra covering from UV to near IR and the software needed to analyze them. We describe the LICA-AstroCalc free software that is a user friendly GUI tool to extract information from our database spectra or any other user provided spectrum. The software also includes the complete color database of paints from NCS comprising 1950 types. This helps to evaluate how different colors modify the reflected spectra from different lamps. All spectroscopic measurements have been validated with recommendations from CIELAB and ISO from NCS database.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1882  
Permanent link to this record
 

 
Author Kolláth, Z.; Kránicz, B. url  doi
openurl 
  Title On the feasibility of inversion methods based on models of urban sky glow Type Journal Article
  Year 2014 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 139 Issue Pages (down) 27-34  
  Keywords Light pollution; Radiative transfer; Light scattering  
  Abstract Multi-wavelength imaging luminance photometry of sky glow provides a huge amount of information on light pollution. However, the understanding of the measured data involves the combination of different processes and data of radiation transfer, atmospheric physics and atmospheric constitution. State-of-the-art numerical radiation transfer models provide the possibility to define an inverse problem to obtain information on the emission intensity distribution of a city and perhaps the physical properties of the atmosphere. We provide numerical tests on the solvability and feasibility of such procedures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 179  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: