toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cui, H.; Shen, J.; Huang, Y.; Shen, X.; So, C.W.; Pun, C.S.J. url  doi
openurl 
  Title Night Sky Brightness Monitoring Network in Wuxi, China Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume in press Issue Pages 107219  
  Keywords (up) skyglow  
  Abstract The rapid development of cities has brought tremendous pressure to astronomical observation, energy security, and the ecosystem. Automatic monitoring of night sky brightness (NSB) can help us to understand its regional differences and time variations of NSB effectively and to investigate the human and natural factors which lead to these changes. In this paper, the construction of Wuxi City night sky brightness monitoring network (WBMN) in China is presented. In addition to introducing the equipment and the installation of the network, a brief analysis of the data obtained from the stations will also be presented. The impact of human activities on the NSB is illustrated through its changes during the Spring Festival (lunar new year) and non-festival nights, and through a comparison study between NSB data taken from locations of different land usages. It is concluded that, while the reduction in human activities after non-festival midnights or the reduction in moon illumination near the new moon epoch led to darker night skies, brightening of the night skies may be attributed to firework displays during the nights of Spring Festival in 2019. On the other hand, the absence of firework during the Spring Festival in 2020 may explain the darker night skies. Finally, there is an evidence that the urban developments in Wuxi are degrading night sky quality.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3054  
Permanent link to this record
 

 
Author Massetti, L. url  doi
openurl 
  Title Drivers of artificial light at night variability in urban, rural and remote areas Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume in press Issue Pages  
  Keywords (up) Skyglow  
  Abstract Light pollution generated by the excessive use of artificial light at night is an environmental and ecological concern. Artificial light at night is diffused far from the sources, for long distances by scattering in the atmosphere (skyglow), thus affecting the night sky and the biodiversity of rural and natural areas. The characterization of the level and variability of light pollution has become an important issue for several disciplines.

This study analyzes light pollution in urban, rural and remote sites in Tuscany (Italy) by monitoring night sky brightness. Night sky brightness (NSB) data collected from 2016 to 2019 were analyzed to assess annual and seasonal variability at each site and between sites. The relationship between night sky brightness and moonlight and weather conditions were also analyzed. Trend analysis was also performed to evaluate the degradation of the quality of the measurement with time due to dirty accumulation on the sensor shield.

NSB in Tuscany during moonless nights ranged between 17.3 and 21.8 mpsas. The monthly cycle of moonlight is the main driver of night sky brightness variability in the remote site (21.8 mpsas on moonless nights and 18.5 mpsas on full moon nights) with a slight, but significant darkening effect during rainy conditions (22.3 mpsas). In urban sites, moonlight cycle is almost completely masked by weather conditions, as it can be seen from the analysis of seasonal variability, lunar monthly cycle analysis and weather condition analysis. Average night sky brightness on rainy days might reach 15.4 mpsas (approximately 436 times brighter than the natural background), an intensity that is even higher than average night sky brightness in full moonlight at the same site (16.6 mpsas). Light pollution can reach levels that might affect nocturnal species, and therefore the study of long term variability of light pollution is important for ecological studies.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3069  
Permanent link to this record
 

 
Author Wallner, S.; Kocifaj, M. url  doi
openurl 
  Title Impacts of surface albedo variations on the night sky brightness – A numerical and experimental analysis Type Journal Article
  Year 2019 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 239 Issue Pages 106648  
  Keywords (up) Skyglow; albedo; surface albedo; Sky Quality Meter; Austria; Europe  
  Abstract The aim of this paper is to analyze surface albedo impacts on artificial night sky brightness at zenith. The way in which these parameters correlate with each other is analyzed numerically and then experimentally by Sky Quality Meters (SQMs) in the city of Linz, Austria between 2016 and 2018. Three SQMs are located in city areas that differ in ground type, while other two are installed outside but near the city. To eliminate systematic errors of different SQMs or a missing inter-calibration of all devices, we examine relative change in zenithal brightness instead of its absolute values. However, the ground albedo not only depends on the ground type, but also shows seasonal variation most often driven by vegetation and environmental change. To understand these changes, we use SkyGlow simulator to perform numerical experiments on four different albedo models. The results have proven that seasonal variations are clearly visible as green city parts become darker around autumn and ratios to urban located SQMs increase. We show that there is a major difference in simulation results if either conducting city parts with various surface albedos or using only one averaged value over the whole city. The latter produces worse fit to the observed SQM data, implying that a use of various surface albedos is a need when modelling zenithal brightness in artificially lit areas of a city or town. Also, the seasonal changes of surface albedo cannot be neglected and the parameter itself must be included in the modelling tools.  
  Address Department of Astrophysics, University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria; stefan.wallner(at)univie.ac.at  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2675  
Permanent link to this record
 

 
Author Duriscoe, D.M. url  doi
openurl 
  Title Photometric indicators of visual night sky quality derived from all-sky brightness maps Type Journal Article
  Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT  
  Volume 181 Issue Pages 33-45  
  Keywords (up) Skyglow; Instrumentation  
  Abstract Wide angle or fisheye cameras provide a high resolution record of artificial sky glow, which results from the scattering of escaped anthropogenic light by the atmosphere, over the sky vault in the moonless nocturnal environment. Analysis of this record yields important indicators of the extent and severity of light pollution. The following indicators were derived through numerical analysis of all-sky brightness maps: zenithal, average all-sky, median, brightest, and darkest sky brightness. In addition, horizontal and vertical illuminance, resulting from sky brightness were computed. A natural reference condition to which the anthropogenic component may be compared is proposed for each indicator, based upon an iterative analysis of a high resolution natural sky model. All-sky brightness data, calibrated in the V band by photometry of standard stars and converted to luminance, from 406 separate data sets were included in an exploratory analysis. Of these, six locations representing a wide range of severity of impact from artificial sky brightness were selected as examples and examined in detail. All-sky average brightness is the most unbiased indicator of impact to the environment, and is more sensitive and accurate in areas of slight to moderate light pollution impact than zenith brightness. Maximum vertical illuminance provides an excellent indicator of impacts to wilderness character, as does measures of the brightest portions of the sky. Zenith brightness, the workhorse of field campaigns, is compared to the other indicators and found to correlate well with horizontal illuminance, especially at relatively bright sites. The median sky brightness describes a brightness threshold for the upper half of the sky, of importance to telescopic optical astronomy. Numeric indicators, in concert with all-sky brightness maps, provide a complete assessment of visual sky quality at a site.  
  Address U.S. National Park Service, Natural Sounds and Night Skies Division, 351 Pacu Lane, Bishop, CA 93514, USA; dan_duriscoe(at)nps.gov  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ ; IDA @ john @ Serial 1376  
Permanent link to this record
 

 
Author Jechow, A.; Ribas, S.J.; Domingo, R.C.; Hölker, F.; Kolláth, Z.; Kyba, C.C.M. url  doi
openurl 
  Title Tracking the dynamics of skyglow with differential photometry using a digital camera with fisheye lens Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 209 Issue Pages 212-223  
  Keywords (up) Skyglow; Instrumentation  
  Abstract rtificial skyglow is dynamic due to changing atmospheric conditions and the switching on and off of artificial lights throughout the night. Street lights as well as the ornamental illumination of historical sites and buildings are sometimes switched off at a certain time to save energy. Ornamental lights in particular are often directed upwards, and can therefore have a major contribution towards brightening of the night sky. Here we use differential photometry to investigate the change in night sky brightness and illuminance during an automated regular switch-off of ornamental light in the town of Balaguer and an organized switch-off of all public lights in the village of Àger, both near Montsec Astronomical Park in Spain. The sites were observed during two nights with clear and cloudy conditions using a DSLR camera and a fisheye lens. A time series of images makes it possible to track changes in lighting conditions and sky brightness simultaneously. During the clear night, the ornamental lights in Balaguer contribute over 20% of the skyglow at zenith at the observational site. Furthermore, we are able to track very small changes in the ground illuminance on a cloudy night near Àger.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1807  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: