toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aubé, M.; Kocifaj, M. url  doi
openurl 
  Title Editorial: Special issue on remote sensing of light pollution Type Journal Article
  Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 181 Issue Pages 1  
  Keywords (up) Commentary  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1441  
Permanent link to this record
 

 
Author Pravettoni, M.; Strepparava, D.; Cereghetti, N.; Klett, S.; Andretta, M.; Steiger, M. url  doi
openurl 
  Title Indoor calibration of Sky Quality Meters: linearity, spectral responsivity and uncertainty analysis Type Journal Article
  Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 181 Issue in press Pages 74-86  
  Keywords (up) Instrumentation  
  Abstract The indoor calibration of brightness sensors requires extremely low values of irradiance in the most accurate and reproducible way. In this work the testing equipment of an ISO 17025 accredited laboratory for electrical testing, qualification and type approval of solar photovoltaic modules was modified in order to test the linearity of the instruments from few mW/cm2 down to fractions of nW/cm2, corresponding to levels of simulated brightness from 6 to 19 mag/arcsec2. Sixteen Sky Quality Meter (SQM) produced by Unihedron, a Canadian manufacturer, were tested, also assessing the impact of the ageing of their protective glasses on the calibration coefficients and the drift of the instruments. The instruments are in operation on measurement points and observatories at different sites and altitudes in Southern Switzerland, within the framework of OASI, the Environmental Observatory of Southern Switzerland. The authors present the results of the calibration campaign: linearity; brightness calibration, with and without protective glasses; transmittance measurement of the glasses; and spectral responsivity of the devices. A detailed uncertainty analysis is also provided, according to the ISO 17025 standard.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1399  
Permanent link to this record
 

 
Author Zoogman, P.; Liu, X.; Suleiman, R.M.; Pennington, W.F.; Flittner, D.E.; Al-Saadi, J.A.; Hilton, B.B.; Nicks, D.K.; Newchurch, M.J.; Carr, J.L.; Janz, S.J.; Andraschko, M.R.; Arola, A.; Baker, B.D.; Canova, B.P.; Chan Miller, C.; Cohen, R.C.; Davis, J.E.; Dussault, M.E.; Edwards, D.P.; Fishman, J.; Ghulam, A.; González Abad, G.; Grutter, M.; Herman, J.R.; Houck, J.; Jacob, D.J.; Joiner, J.; Kerridge, B.J.; Kim, J.; Krotkov, N.A.; Lamsal, L.; Li, C.; Lindfors, A.; Martin, R.V.; McElroy, C.T.; McLinden, C.; Natraj, V.; Neil, D.O.; Nowlan, C.R.; OSullivan, E.J.; Palmer, P.I.; Pierce, R.B.; Pippin, M.R.; Saiz-Lopez, A.; Spurr, R.J.D.; Szykman, J.J.; Torres, O.; Veefkind, J.P.; Veihelmann, B.; Wang, H.; Wang, J.; Chance, K. url  doi
openurl 
  Title Tropospheric emissions: Monitoring of pollution (TEMPO) Type Journal Article
  Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 186 Issue Pages 17-39  
  Keywords (up) Instrumentation, Remote Sensing  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1498  
Permanent link to this record
 

 
Author Bará, S.; Escofet, J. url  doi
openurl 
  Title On lamps, walls, and eyes: The spectral radiance field and the evaluation of light pollution indoors Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal J of Quant Spect and Rad Trans  
  Volume 205 Issue Pages 267-277  
  Keywords (up) Instrumentation; Light pollution; Artificial light at night; Light field; Radiance field; Radiometry; Photometry  
  Abstract Light plays a key role in the regulation of different physiological processes, through several visual and non-visual retinal phototransduction channels whose basic features are being unveiled by recent research. The growing body of evidence on the significance of these effects has sparked a renewed interest in the determination of the light field at the entrance pupil of the eye in indoor spaces. Since photic interactions are strongly wavelength-dependent, a significant effort is being devoted to assess the relative merits of the spectra of the different types of light sources available for use at home and in the workplace. The spectral content of the light reaching the observer eyes in indoor spaces, however, does not depend exclusively on the sources: it is partially modulated by the spectral reflectance of the walls and surrounding surfaces, through the multiple reflections of the light beams along all possible paths from the source to the observer. This modulation can modify significantly the non-visual photic inputs that would be produced by the lamps alone, and opens the way for controlling—to a certain extent—the subject's exposure to different regions of the optical spectrum. In this work we evaluate the expected magnitude of this effect and we show that, for factorizable sources, the spectral modulation can be conveniently described in terms of a set of effective filter-like functions that provide useful insights for lighting design and light pollution assessment. The radiance field also provides a suitable bridge between indoor and outdoor light pollution studies.  
  Address Área de Óptica, Departamento de Física Aplicada, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2163  
Permanent link to this record
 

 
Author Bouroussis, C.A.; Topalis, F.V. url  doi
openurl 
  Title Assessment of outdoor lighting installations and their impact on light pollution using unmanned aircraft systems – The concept of the drone-gonio-photometer Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 253 Issue Pages 107155  
  Keywords (up) Instrumentation; Lighting  
  Abstract This paper presents the ongoing work of the lighting laboratory to develop a standardized method for the measurement of several types of lighting installations using unmanned aircraft systems. The technology of unmanned aircraft systems can incorporate multiple types of sensors and can be programmed to fly in predefined areas and routes in order to perform complex measurements with limited human intervention. This technology provides the freedom of measurements from several angular positions and altitudes in a fast, easy, accurate and repeatable way. The overall aim of this work is to assess the lighting installations, not only against the applicable lighting standards but also to investigate and reveal issues related to light pollution and obtrusive lighting. The latter are issues that in most cases are neglected due to the lack of standardized methods of calculation and measurement. Current assessment methods require illuminance or luminance measurements of horizontal and vertical surfaces generally from the ground. The proposed approach provides a holistic three-dimensional evaluation of the lighting installations beyond the common methods and geometries and opens the discussion for future update of the relevant standards on outdoor lighting. In the scope of this paper, several proof-of-concept cases are presented.  
  Address Lighting Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, 15780, Zografou, Athens, Greece; bouroussis(at)gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2996  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: