toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Massetti, L. url  doi
openurl 
  Title Drivers of artificial light at night variability in urban, rural and remote areas Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume in press Issue Pages  
  Keywords Skyglow  
  Abstract Light pollution generated by the excessive use of artificial light at night is an environmental and ecological concern. Artificial light at night is diffused far from the sources, for long distances by scattering in the atmosphere (skyglow), thus affecting the night sky and the biodiversity of rural and natural areas. The characterization of the level and variability of light pollution has become an important issue for several disciplines.

This study analyzes light pollution in urban, rural and remote sites in Tuscany (Italy) by monitoring night sky brightness. Night sky brightness (NSB) data collected from 2016 to 2019 were analyzed to assess annual and seasonal variability at each site and between sites. The relationship between night sky brightness and moonlight and weather conditions were also analyzed. Trend analysis was also performed to evaluate the degradation of the quality of the measurement with time due to dirty accumulation on the sensor shield.

NSB in Tuscany during moonless nights ranged between 17.3 and 21.8 mpsas. The monthly cycle of moonlight is the main driver of night sky brightness variability in the remote site (21.8 mpsas on moonless nights and 18.5 mpsas on full moon nights) with a slight, but significant darkening effect during rainy conditions (22.3 mpsas). In urban sites, moonlight cycle is almost completely masked by weather conditions, as it can be seen from the analysis of seasonal variability, lunar monthly cycle analysis and weather condition analysis. Average night sky brightness on rainy days might reach 15.4 mpsas (approximately 436 times brighter than the natural background), an intensity that is even higher than average night sky brightness in full moonlight at the same site (16.6 mpsas). Light pollution can reach levels that might affect nocturnal species, and therefore the study of long term variability of light pollution is important for ecological studies.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3069  
Permanent link to this record
 

 
Author Aubé, M.; Roby, J. url  doi
openurl 
  Title Sky brightness levels before and after the creation of the first International Dark Sky Reserve, Mont-Mégantic Observatory, Québec, Canada Type Journal Article
  Year 2014 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT  
  Volume 139 Issue Pages 52-63  
  Keywords Skyglow; measurements; metrology; Mont-Mégantic; Quebec; Canada; modelling; radiative transfer; sky quality; sky brightness  
  Abstract In 2007, the area around the Mont-Mégantic Observatory (MMO) was officially certified by the International Dark-Sky Association and the Royal Astronomy Association of Canada as the first International Dark Sky Reserve (IDSR). In order to be able to investigate the impact of Artificial Light at Night on night sky brightness before and after the establishment of the IDSR, we used a heterogeneous artificial sky brightness model including an implicit calculation of 2nd order scattering (ILLUMINA) developed by Martin Aubé's group. This model generates three kinds of outputs: the sky radiance at the given site, observing angle and wavelength and the corresponding contribution and sensitivity maps. The maps allow for the identification of the origin of the sky radiance according to each part of the surrounding territory. For summer clear sky conditions, the results show that replacing light fixtures within a 25 km radius around the MMO with cut-off High Pressure Sodium devices and reducing the total installed radiant power to ~40% of its initial level are very efficient ways of reducing artificial sky brightness. The artificial sky brightness reduction at zenith observed after the establishment of the IDSR was ~50% in the 546 nm mercury spectral line, while the reduction obtained in the 569 nm sodium line was ~30%. A large part of that reduction can be associated to the reduction in radiant power. The contribution and sensitivity maps highlight critical zones where any changes in the lighting infrastructure have the most important impact on sky brightness at the MMO. Contribution and sensitivity maps have been used to analyze the detailed origin of sky brightness reduction. The results of this study are intended to support authorities in the management of their lighting infrastructure with the goal of reducing sky brightness. The results have been shared with MMO officials and are being used as a tool to improve sky quality at the observatory.  
  Address Tel.: +1 819 564 6350x4146.  
  Corporate Author Thesis  
  Publisher ScienceDirect Place of Publication Editor  
  Language English Summary Language (up) English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1099  
Permanent link to this record
 

 
Author Aubé, M.; Kocifaj, M.; Zamorano, J.; Solano Lamphar, H.A.; Sanchez de Miguel, A. url  doi
openurl 
  Title The spectral amplification effect of clouds to the night sky radiance in Madrid Type Journal Article
  Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 181 Issue Pages 11-23  
  Keywords Skyglow; Madrid; Spain; Europe; artificial light at night; light pollution; clouds; amplification  
  Abstract Artificial Light at Night (ALAN) may have various environmental impacts ranging from compromising the visibility of astronomical objects to the perturbation of circadian cycles in animals and humans. In the past much research has been carried out to study the impact of ALAN on the radiance of the night sky during clear sky conditions. This was mainly justified by the need for a better understanding of the behavior of ALAN propagation into the environment in order to protect world-class astronomical facilities. More recently, alongside to the threat to the natural starry sky, many issues have emerged from the biological science community. It has been shown that, nearby or inside cities, the presence of cloud cover generally acts as an amplifier for artificial sky radiance while clouds behave as attenuators for remote observers. In this paper we show the spectral behavior of the zenith sky radiance amplification factor exerted by clouds inside a city. We compare in-situ measurements made with the spectrometer SAND-4 with a numerical model applied to the specific geographical context of the Universidad Complutense de Madrid in Spain.  
  Address Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Canada J1E 4K1; aubema(at)gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language (up) English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1351  
Permanent link to this record
 

 
Author Duriscoe, D.M. url  doi
openurl 
  Title Photometric indicators of visual night sky quality derived from all-sky brightness maps Type Journal Article
  Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT  
  Volume 181 Issue Pages 33-45  
  Keywords Skyglow; Instrumentation  
  Abstract Wide angle or fisheye cameras provide a high resolution record of artificial sky glow, which results from the scattering of escaped anthropogenic light by the atmosphere, over the sky vault in the moonless nocturnal environment. Analysis of this record yields important indicators of the extent and severity of light pollution. The following indicators were derived through numerical analysis of all-sky brightness maps: zenithal, average all-sky, median, brightest, and darkest sky brightness. In addition, horizontal and vertical illuminance, resulting from sky brightness were computed. A natural reference condition to which the anthropogenic component may be compared is proposed for each indicator, based upon an iterative analysis of a high resolution natural sky model. All-sky brightness data, calibrated in the V band by photometry of standard stars and converted to luminance, from 406 separate data sets were included in an exploratory analysis. Of these, six locations representing a wide range of severity of impact from artificial sky brightness were selected as examples and examined in detail. All-sky average brightness is the most unbiased indicator of impact to the environment, and is more sensitive and accurate in areas of slight to moderate light pollution impact than zenith brightness. Maximum vertical illuminance provides an excellent indicator of impacts to wilderness character, as does measures of the brightest portions of the sky. Zenith brightness, the workhorse of field campaigns, is compared to the other indicators and found to correlate well with horizontal illuminance, especially at relatively bright sites. The median sky brightness describes a brightness threshold for the upper half of the sky, of importance to telescopic optical astronomy. Numeric indicators, in concert with all-sky brightness maps, provide a complete assessment of visual sky quality at a site.  
  Address U.S. National Park Service, Natural Sounds and Night Skies Division, 351 Pacu Lane, Bishop, CA 93514, USA; dan_duriscoe(at)nps.gov  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language (up) English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ ; IDA @ john @ Serial 1376  
Permanent link to this record
 

 
Author Kocifaj, M. url  doi
openurl 
  Title Towards a Comprehensive City Emission Function (CCEF) Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT  
  Volume 205 Issue Pages 253-266  
  Keywords Lighting; Skyglow  
  Abstract The comprehensive city emission function (CCEF) is developed for a heterogeneous light-emitting or blocking urban environments, embracing any combination of input parameters that characterize linear dimensions in the system (size and distances between buildings or luminaires), properties of light-emitting elements (such as luminous building façades and street lighting), ground reflectance and total uplight-fraction, all of these defined for an arbitrarily sized 2D area. The analytical formula obtained is not restricted to a single model class as it can capture any specific light-emission feature for wide range of cities. The CCEF method is numerically fast in contrast to what can be expected of other probabilistic approaches that rely on repeated random sampling. Hence the present solution has great potential in light-pollution modeling and can be included in larger numerical models. Our theoretical findings promise great progress in light-pollution modeling as this is the first time an analytical solution to city emission function (CEF) has been developed that depends on statistical mean size and height of city buildings, inter-building separation, prevailing heights of light fixtures, lighting density, and other factors such as e.g. luminaire light output and light distribution, including the amount of uplight, and representative city size. The model is validated for sensitivity and specificity pertinent to combinations of input parameters in order to test its behavior under various conditions, including those that can occur in complex urban environments. It is demonstrated that the solution model succeeds in reproducing a light emission peak at some elevated zenith angles and is consistent with reduced rather than enhanced emission in directions nearly parallel to the ground.  
  Address  
  Corporate Author Thesis  
  Publisher ScienceDirect Place of Publication Editor  
  Language English Summary Language (up) English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1757  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: