toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Min, M.; Zheng, J.; Zhang, P.; Hu, X.; Chen, L.; Li, X.; Huang, Y.; Zhu, L. url  doi
openurl 
  Title (up) A low-light radiative transfer model for satellite observations of moonlight and earth surface light at night Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume in press Issue Pages 106954  
  Keywords Remote Sensing; Instrumentation  
  Abstract Lunar sun-reflected light can be effectively measured through a low-light band or a day/night band (DNB) implemented on space-based optical sensors. Based on moonlight, nocturnal observations for artificial light sources at night can be achieved. However, to date, an open-sourced and mature Low-Light Radiative Transfer Model (LLRTM) for the further understanding of the radiative transfer problem at night is still unavailable. Therefore, this study develops a new LLRTM at night with the correction of the lunar and active surface light sources. First, the radiative transfer equations with an active surface light source are derived for the calculation based on the lunar spectral irradiance (LSI) model. The simulation from this new LLRTM shows a minimal bias when compared with the discrete ordinates radiative transfer (DISORT) model. The simulated results of radiance and reflectance at the top of the atmosphere (TOA) also show that the surface light source has a remarkable impact on the radiative transfer process. In contrast, the change in the lunar phase angle has minimal influence. Also, comparing with space-based DNB radiance observations, LLRTM shows the potential to simulate space-based low-light imager observations under an effective surface light source condition during the night.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2850  
Permanent link to this record
 

 
Author Kocifaj, M. url  doi
openurl 
  Title (up) A review of the theoretical and numerical approaches to modeling skyglow: iterative approach to RTE, MSOS, and two-stream approximation Type Journal Article
  Year 2015 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 181 Issue Pages 2-10  
  Keywords Skyglow  
  Abstract The study of diffuse light of a night sky is undergoing a renaissance due to the development of inexpensive high performance computers which can significantly reduce the time needed for accurate numerical simulations. Apart from targeted field campaigns, numerical modeling appears to be one of the most attractive and powerful approaches for predicting the diffuse light of a night sky. However, computer-aided simulation of night-sky radiances over any territory and under arbitrary conditions is a complex problem that is difficult to solve. This study addresses three concepts for modeling the artificial light propagation through a turbid stratified atmosphere. Specifically, these are two-stream approximation, iterative approach to Radiative Transfer Equation (RTE) and Method of Successive Orders of Scattering (MSOS). The principles of the methods, their strengths and weaknesses are reviewed with respect to their implications for night-light modelling in different environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1295  
Permanent link to this record
 

 
Author Duriscoe, D.M.; Anderson, S.J.; Luginbuhl, C.B.; Baugh, K.E. url  doi
openurl 
  Title (up) A simplified model of all-sky artificial sky glow derived from VIIRS Day/Night band data Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 214 Issue Pages 133-145  
  Keywords Skyglow; Remote Sensing  
  Abstract We present a simplified method using geographic analysis tools to predict the average artificial luminance over the hemisphere of the night sky, expressed as a ratio to the natural condition. The VIIRS Day/Night Band upward radiance data from the Suomi NPP orbiting satellite was used for input to the model. The method is based upon a relation between sky glow brightness and the distance from the observer to the source of upward radiance. This relationship was developed using a Garstang radiative transfer model with Day/Night Band data as input, then refined and calibrated with ground-based all-sky V-band photometric data taken under cloudless and low atmospheric aerosol conditions. An excellent correlation was found between observed sky quality and the predicted values from the remotely sensed data. Thematic maps of large regions of the earth showing predicted artificial V-band sky brightness may be quickly generated with modest computing resources. We have found a fast and accurate method based on previous work to model all-sky quality. We provide limitations to this method. The proposed model meets requirements needed by decision makers and land managers of an easy to interpret and understand metric of sky quality.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1879  
Permanent link to this record
 

 
Author Tong, K.P.; Kyba, C.C.M.; Heygster, G.; Kuechly, H.U.; Notholt, J.; Kolláth, Z. url  doi
openurl 
  Title (up) Angular distribution of upwelling artificial light in Europe as observed by Suomi–NPP satellite Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume in press Issue Pages in press  
  Keywords Remote Sensing; Skyglow  
  Abstract Measuring the angular distribution of upwelling artificial light is important for modeling light pollution, because the direction of emission affects how light propagates in the atmosphere. We characterize the angular distributions of upwelling artificial light for Europe and northern Africa in 2018, based on night time radiance data for clear nights without twilight and moonlight from the VIIRS–DNB sensor on board the Suomi NPP satellite. We find that in general, suburban areas of major cities emit more light at larger zenith angles, whereas the opposite can be seen at the city centers, where the highest radiance is directed upward. The mean numbers of overflights for the year is 83, meaning that there are on average approximately seven suitable overflights per month. Future analysis may consider using moonlight models to compensate for the retrieval of moonlit scenes and analyzing data from different years in order to expand the amount of available data. As the VIIRS–DNB sensor on board the NOAA–20 satellite (launched 2017) has almost the same design, this method can also be extended to the data taken by NOAA–20.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2880  
Permanent link to this record
 

 
Author Bouroussis, C.A.; Topalis, F.V. url  doi
openurl 
  Title (up) Assessment of outdoor lighting installations and their impact on light pollution using unmanned aircraft systems – The concept of the drone-gonio-photometer Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 253 Issue Pages 107155  
  Keywords Instrumentation; Lighting  
  Abstract This paper presents the ongoing work of the lighting laboratory to develop a standardized method for the measurement of several types of lighting installations using unmanned aircraft systems. The technology of unmanned aircraft systems can incorporate multiple types of sensors and can be programmed to fly in predefined areas and routes in order to perform complex measurements with limited human intervention. This technology provides the freedom of measurements from several angular positions and altitudes in a fast, easy, accurate and repeatable way. The overall aim of this work is to assess the lighting installations, not only against the applicable lighting standards but also to investigate and reveal issues related to light pollution and obtrusive lighting. The latter are issues that in most cases are neglected due to the lack of standardized methods of calculation and measurement. Current assessment methods require illuminance or luminance measurements of horizontal and vertical surfaces generally from the ground. The proposed approach provides a holistic three-dimensional evaluation of the lighting installations beyond the common methods and geometries and opens the discussion for future update of the relevant standards on outdoor lighting. In the scope of this paper, several proof-of-concept cases are presented.  
  Address Lighting Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, 15780, Zografou, Athens, Greece; bouroussis(at)gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2996  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: