|
Records |
Links  |
|
Author |
Aubé, M.; Simoneau, A. |

|
|
Title |
New features to the night sky radiance model illumina: Hyperspectral support, improved obstacles and cloud reflection |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
Journal of Quantitative Spectroscopy and Radiative Transfer |
|
|
Volume |
211 |
Issue |
|
Pages |
25-34 |
|
|
Keywords |
|
|
|
Abstract |
Illumina is one of the most physically detailed artificial night sky brightness model to date. It has been in continuous development since 2005 [1]. In 2016–17, many improvements were made to the Illumina code including an overhead cloud scheme, an improved blocking scheme for subgrid obstacles (trees and buildings), and most importantly, a full hyperspectral modeling approach. Code optimization resulted in significant reduction in execution time enabling users to run the model on standard personal computers for some applications.
After describing the new schemes introduced in the model, we give some examples of applications for a peri-urban and a rural site both located inside the International Dark Sky reserve of Mont-Mégantic (QC, Canada). |
|
|
Address |
Cégep de Sherbrooke, 475, rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada; martin.aube(at)cegepsherbrooke.qc.ca |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
IDA @ john @ |
Serial |
1818 |
|
Permanent link to this record |
|
|
|
|
Author |
Petržala, J. |

|
|
Title |
Feasibility of inverse problem solution for determination of city emission function from night sky radiance measurements |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
Journal of Quantitative Spectroscopy and Radiative Transfer |
|
|
Volume |
213 |
Issue |
|
Pages |
86-94 |
|
|
Keywords |
Skyglow |
|
|
Abstract |
The knowledge of the emission function of a city is crucial for simulation of sky glow in its vicinity. The indirect methods to achieve this function from radiances measured over a part of the sky have been recently developed. In principle, such methods represent an ill-posed inverse problem. This paper deals with the theoretical feasibility study of various approaches to solving of given inverse problem. Particularly, it means testing of fitness of various stabilizing functionals within the Tikhonov’s regularization. Further, the L-curve and generalized cross validation methods were investigated as indicators of an optimal regularization parameter. At first, we created the theoretical model for calculation of a sky spectral radiance in the form of a functional of an emission spectral radiance. Consequently, all the mentioned approaches were examined in numerical experiments with synthetical data generated for the fictitious city and loaded by random errors. The results demonstrate that the second order Tikhonov’s regularization method together with regularization parameter choice by the L-curve maximum curvature criterion provide solutions which are in good agreement with the supposed model emission functions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
1868 |
|
Permanent link to this record |
|
|
|
|
Author |
Galadí-Enríquez, D. |

|
|
Title |
Beyond CCT: The spectral index system as a tool for the objective, quantitative characterization of lamps |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
JQSRT |
|
|
Volume |
206 |
Issue |
|
Pages |
399-408 |
|
|
Keywords |
Lighting |
|
|
Abstract |
Correlated color temperature (CCT) is a semi-quantitative system that roughly describes the spectra of lamps. This parameter gives the temperature (measured in kelvins) of the black body that would show the hue more similar to that of the light emitted by the lamp. Modern lamps for indoor and outdoor lighting display many spectral energy distributions, most of them extremely different to those of black bodies, what makes CCT to be far from a perfect descriptor from the physical point of view. The spectral index system presented in this work provides an accurate, objective, quantitative procedure to characterize the spectral properties of lamps, with just a few numbers. The system is an adaptation to lighting technology of the classical procedures of multi-band astronomical photometry with wide and intermediate-band filters. We describe the basic concepts and we apply the system to a representative set of lamps of many kinds. The results lead to interesting, sometimes surprising conclusions. The spectral index system is extremely easy to implement from the spectral data that are routinely measured at laboratories. Thus, including this kind of computations in the standard protocols for the certification of lamps will be really straightforward, and will enrich the technical description of lighting devices. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
1835 |
|
Permanent link to this record |
|
|
|
|
Author |
Hänel, A.; Posch, T.; Ribas, S.J.; Aubé, M.; Duriscoe, D.; Jechow, A.; Kolláth, Z.; Lolkema, D.E.; Moore, C.; Schmidt, N.; Spoelstra, H.; Wuchterl, G.; Kyba, C.C.M. |

|
|
Title |
Measuring night sky brightness: methods and challenges |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
Journal of Quantitative Spectroscopy and Radiative Transfer |
|
|
Volume |
205 |
Issue |
|
Pages |
278-290 |
|
|
Keywords |
skyglow |
|
|
Abstract |
Measuring the brightness of the night sky has become an increasingly important topic in recent years, as artificial lights and their scattering by the Earthâ??s atmosphere continue spreading around the globe. Several instruments and techniques have been developed for this task. We give an overview of these, and discuss their strengths and limitations. The different quantities that can and should be derived when measuring the night sky brightness are discussed, as well as the procedures that have been and still need to be defined in this context. We conclude that in many situations, calibrated consumer digital cameras with fisheye lenses provide the best relation between ease-of-use and wealth of obtainable information on the night sky. While they do not obtain full spectral information, they are able to sample the complete sky in a period of minutes, with colour information in three bands. This is important, as given the current global changes in lamp spectra, changes in sky radiance observed only with single band devices may lead to incorrect conclusions regarding long term changes in sky brightness. The acquisition of all-sky information is desirable, as zenith-only information does not provide an adequate characterization of a site. Nevertheless, zenith-only single-band one-channel devices such as the â??Sky Quality Meterâ? continue to be a viable option for long-term studies of night sky brightness and for studies conducted from a moving platform. Accurate interpretation of such data requires some understanding of the colour composition of the sky light. We recommend supplementing long-term time series derived with such devices with periodic all-sky sampling by a calibrated camera system and calibrated luxmeters or luminance meters. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
LoNNe @ kyba @; GFZ @ kyba @ |
Serial |
1731 |
|
Permanent link to this record |
|
|
|
|
Author |
Aubé, M.; Kocifaj, M. |

|
|
Title |
Editorial: Special issue on remote sensing of light pollution |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
Journal of Quantitative Spectroscopy and Radiative Transfer |
|
|
Volume |
181 |
Issue |
|
Pages |
1 |
|
|
Keywords |
Commentary |
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
LoNNe @ kyba @ |
Serial |
1441 |
|
Permanent link to this record |