toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kotarba, A.Z.; Chacewicz, S.; Żmudzka, E. url  doi
openurl 
  Title Night sky photometry over Warsaw (Poland) evaluated simultaneously with surface-based and satellite-based cloud observations Type Journal Article
  Year 2019 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (down) 235 Issue Pages 95-107  
  Keywords Skyglow  
  Abstract Light pollution is a widely distributed form of anthropogenic pollution that threatens both biodiversity and human health. One of the most popular indicators is known as night sky brightness (NSB), measured with photometric techniques. In the study, we report results of the very first, long-term photometric survey of NSB over Poland's capital, Warsaw, for 636 nights between 2014 and 2016 using a sky quality meter (SQM). Data were collected for all-weather conditions and, for the first time, we simultaneously use two independent sources of cloud amount data: surface-based (SYNOP) and satellite-based (Meteosat/SEVIRI). Results show that Warsaw is significantly polluted by light, with average NSB of 18.65 ± 0.06 magSQM/arcsec2 (15 times higher than unpolluted sky). Zenithal NSB is almost unaffected by moonlight. During astronomical nights, cloud cover was the dominant determinant of NSB, increasing by 7 times for overcast sky. In general, the sky brightened by ∼0.2 magSQM/arcsec2 for each 10% increase in cloud fraction. Satellite-based cloud amount data was found to be a very reliable alternative to traditional SYNOP observations. No statistically significant difference was found for average NSB calculated using satellite and SYNOP datasets. This finding is of particular importance, since the coverage of surface-based data is limited, while satellite observations can be obtained for any location on Earth, and collocate with any NSB photometric station. Our investigation also highlighted that SYNOP data are unreliable when cloud amount is low. This is due to the different fields of view for SQM (20°) and SYNOP (180°) observations of broken cloud.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2580  
Permanent link to this record
 

 
Author Netzel, H.; Netzel, P. url  doi
openurl 
  Title High-resolution map of light pollution Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (down) 221 Issue Pages 300-308  
  Keywords Skyglow  
  Abstract In 1976 Berry created a very simple model describing artificial night sky brightness due to light emitted by cities. He used several assumptions and simplifications, due to which, map calculated with this model does not properly describes the night sky brightness. Especially, this is the case for highly urbanized areas. We used Berry’s idea, but we changed some assumptions and used very different input data. As in Berry’s approach, we focused on total sky brightness and did not analyze spectral properties of artificial light emission. Resultant map has a resolution of 100 meters, and so far it is the most detailed map of night sky brightness. Moreover we included the shadowing effect, which is very important on mountainous areas. Map is calculated for Poland and for several other places in Europe. We also describe the comparison between calculated values and measurements for different areas in Europe. Also we present comparison between our approach and the new world atlas of artificial night sky brightness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1937  
Permanent link to this record
 

 
Author Baddiley, C. url  doi
openurl 
  Title Light pollution modelling, and measurements at Malvern Hills AONB, of county conversion to blue rich LEDs Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (down) 219 Issue Pages 142-173  
  Keywords Skyglow  
  Abstract The introduction of blue rich colour, Correlated-Colour-Temperature (CCT) 6000K road lighting could increase skyglow significantly compared with CCT 3000K types, if the blue content reaches the sky.

Highways England have a policy for lighting specification on motorways advised by the author's work. This is a categorised environmental impact point system of summed brightness as a function of angle from vertically down to the cut off angle; but with no CCT limitation.

Modelling was done for Malvern-Hills Area-of-Outstanding-Natural-Beauty (MHAONB), for the nighttime environmental impact of the LED replacement of Low-Pressure-Sodium throughout Herefordshire. The study was extended to include High-Pressure-Sodium and to LEDs at several CCTs, for the same Photopic ground illuminance.

Dark-Sky-Survey geographic location results for the MHAONB (2012) are described. Near-Zenith sky brightness photometry became continuous from 2016 at 2 minute intervals in all weathers, not just clear nights, with a networked calibrated Unihedron Lensed Sky Quality Meter (LSQM). Samples were also taken of all-sky camera images, corrected for vignetting and near-Zenith calibrated with the LSQM, to study weather effects, Milky Way contribution, and Herefordshire lighting conversion to blue-rich LEDs (2013-15), compared with the less converted Severn valley direction.

Time-plots and histogram analysis showed a small reduction in brightness (2012-2018), 0.1 mag.arcsec−2. Most variation is from increased sampling of distant cloud cover effects. Mist or low cloud on the horizon obscures light sources beyond reducing local skyglow, while high cloud reflects, increasing clear sky brightness. The Milky Way is critically 20% above background. Darkest periods near Zenith reach 21.1 mag.arcsec−2, to 21.2 after rain or surrounding low-cloud or poor-visibility. Clear-sky brightness decreases into early hours (∼0.03 mag.arcsec−2/hr); dimming effects were not seen.

The Zenith brightness is still set by distant cities, while towards the horizon, commercial and private uncontrolled non-directional LED lighting is increasing, negating the improvements in road lighting.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1914  
Permanent link to this record
 

 
Author Linares, H.; Masana, E.; Ribas, S.J.; Garcia - Gil, M.; Figueras, F.; Aubé, M. url  doi
openurl 
  Title Modelling the night sky brightness and light pollution sources of Montsec protected area Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (down) 217 Issue Pages 178-188  
  Keywords skyglow  
  Abstract We proceeded to the modelling of the night sky brightness of Montsec area (north-east of Spain), an astronomical protected area certified as a Starlight Reserve. We have used the hyperspectral version of ILLUMINA, an artificial sky brightness model. Ground based measurements for Montsec and other areas of Catalonia 0015 ; 0016, including both photometric and spectroscopic data, has been used to fit and evaluate the input parameters of the model. In this first modelling attempt, Lleida, the biggest city in the area, has been considered as the unique source of light pollution. In 2014 there was an update of the lighting infrastructure in Lleida. A detailed comparison of the sky brightness before and after the change is shown in order to measure the effects that different kind of lamps can produce. This information could be used to plan for future updates and improvements of the lighting systems in the area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1923  
Permanent link to this record
 

 
Author Bouroussis, C.A.; Topalis, F.V. url  doi
openurl 
  Title The effect of the spectral response of measurement instruments in the assessment of night sky brightness Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (down) 216 Issue Pages 56-69  
  Keywords Skyglow; Instrumentation  
  Abstract This paper deals with the errors and uncertainties in skyglow measurements caused by the variation of sky's spectrum. It considers the theoretical spectral response of common instruments that are used for light pollution assessment. Various types of light sources were used in this investigation. This study calculates the spectral mismatch errors and the corresponding correction factors for each combination of instrument and light source. The calculation method is described and the results are presented in multiple figures. Calculated data show a big variation in potential errors that can be introduced when comparing readings of diverse instruments without considering the sky spectrum variation. This makes the spectral data of the sky a mandatory input to the dark sky assessment. Useful conclusions, related to instruments with better or worse behaviour, are derived from the calculations. The paper also includes suggestions on how to conduct multi-instrument measurements with or without spectral data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1908  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: