toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bará, S.; Escofet, J. url  doi
openurl 
  Title On lamps, walls, and eyes: The spectral radiance field and the evaluation of light pollution indoors Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal J of Quant Spect and Rad Trans  
  Volume (down) 205 Issue Pages 267-277  
  Keywords Instrumentation; Light pollution; Artificial light at night; Light field; Radiance field; Radiometry; Photometry  
  Abstract Light plays a key role in the regulation of different physiological processes, through several visual and non-visual retinal phototransduction channels whose basic features are being unveiled by recent research. The growing body of evidence on the significance of these effects has sparked a renewed interest in the determination of the light field at the entrance pupil of the eye in indoor spaces. Since photic interactions are strongly wavelength-dependent, a significant effort is being devoted to assess the relative merits of the spectra of the different types of light sources available for use at home and in the workplace. The spectral content of the light reaching the observer eyes in indoor spaces, however, does not depend exclusively on the sources: it is partially modulated by the spectral reflectance of the walls and surrounding surfaces, through the multiple reflections of the light beams along all possible paths from the source to the observer. This modulation can modify significantly the non-visual photic inputs that would be produced by the lamps alone, and opens the way for controlling—to a certain extent—the subject's exposure to different regions of the optical spectrum. In this work we evaluate the expected magnitude of this effect and we show that, for factorizable sources, the spectral modulation can be conveniently described in terms of a set of effective filter-like functions that provide useful insights for lighting design and light pollution assessment. The radiance field also provides a suitable bridge between indoor and outdoor light pollution studies.  
  Address Área de Óptica, Departamento de Física Aplicada, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2163  
Permanent link to this record
 

 
Author Petržala, J.; Kocifaj, M. url  doi
openurl 
  Title Research on spectral factors towards determining nocturnal ground irradiance under overcast sky conditions in densely populated regions Type Journal Article
  Year 2017 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (down) 189 Issue Pages 126-132  
  Keywords Skyglow  
  Abstract Light pollution is closely correlated with the meteorological factors, specifically cloudiness that is one of the major amplifiers of night sky radiances in urban regions. Although the decisive effects of cloud deck on artificial nighttime skyglow have been recognized experimentally, the radiative transfer modelling in a heterogeneous nocturnal environment illuminated from many light sources is a non-trivial problem that is difficult to solve both theoretically and numerically. A satisfactorily accurate evaluation of ground-reaching diffuse light is, however, an important issue as some optical properties (e.g. horizontal irradiance) are usually difficult to obtain with common instruments. Overcast sky represents a special class of situations in which clouds can act as amplifiers of the light pollution of the city.

In this paper we proceeded with a simple two-stream approach to solve the scalar radiative transfer equation (RTE) under overcast conditions. The technique we are using allows for a rapid prediction of ground irradiances in densely populated regions assuming various emission functions. We have shown that the classical RTE concept can be adopted in determining the diffuse irradiance, while the model abilities are illustrated in a set of numerical experiments for low and high turbidity states.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2034  
Permanent link to this record
 

 
Author Zoogman, P.; Liu, X.; Suleiman, R.M.; Pennington, W.F.; Flittner, D.E.; Al-Saadi, J.A.; Hilton, B.B.; Nicks, D.K.; Newchurch, M.J.; Carr, J.L.; Janz, S.J.; Andraschko, M.R.; Arola, A.; Baker, B.D.; Canova, B.P.; Chan Miller, C.; Cohen, R.C.; Davis, J.E.; Dussault, M.E.; Edwards, D.P.; Fishman, J.; Ghulam, A.; González Abad, G.; Grutter, M.; Herman, J.R.; Houck, J.; Jacob, D.J.; Joiner, J.; Kerridge, B.J.; Kim, J.; Krotkov, N.A.; Lamsal, L.; Li, C.; Lindfors, A.; Martin, R.V.; McElroy, C.T.; McLinden, C.; Natraj, V.; Neil, D.O.; Nowlan, C.R.; OSullivan, E.J.; Palmer, P.I.; Pierce, R.B.; Pippin, M.R.; Saiz-Lopez, A.; Spurr, R.J.D.; Szykman, J.J.; Torres, O.; Veefkind, J.P.; Veihelmann, B.; Wang, H.; Wang, J.; Chance, K. url  doi
openurl 
  Title Tropospheric emissions: Monitoring of pollution (TEMPO) Type Journal Article
  Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (down) 186 Issue Pages 17-39  
  Keywords Instrumentation, Remote Sensing  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1498  
Permanent link to this record
 

 
Author Kocifaj, M. url  doi
openurl 
  Title A review of the theoretical and numerical approaches to modeling skyglow: iterative approach to RTE, MSOS, and two-stream approximation Type Journal Article
  Year 2015 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (down) 181 Issue Pages 2-10  
  Keywords Skyglow  
  Abstract The study of diffuse light of a night sky is undergoing a renaissance due to the development of inexpensive high performance computers which can significantly reduce the time needed for accurate numerical simulations. Apart from targeted field campaigns, numerical modeling appears to be one of the most attractive and powerful approaches for predicting the diffuse light of a night sky. However, computer-aided simulation of night-sky radiances over any territory and under arbitrary conditions is a complex problem that is difficult to solve. This study addresses three concepts for modeling the artificial light propagation through a turbid stratified atmosphere. Specifically, these are two-stream approximation, iterative approach to Radiative Transfer Equation (RTE) and Method of Successive Orders of Scattering (MSOS). The principles of the methods, their strengths and weaknesses are reviewed with respect to their implications for night-light modelling in different environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1295  
Permanent link to this record
 

 
Author Zamorano, J.; Sánchez de Miguel, A.; Ocaña, F.; Pila-Diez, B.; Gómez Castaño, J.; Pascual, S.; Tapia, C.; Gallego, J.; Fernandez, A.; Nievas, M. url  doi
openurl 
  Title Testing sky brightness models against radial dependency: a dense two dimensional survey around the city of Madrid, Spain Type Journal Article
  Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT  
  Volume (down) 181 Issue Pages 52-66  
  Keywords Skyglow; measurements; light pollution; artificial light at night; modeling; Madrid; Spain  
  Abstract We present a study of the night sky brightness around the extended metropolitan area of Madrid using Sky Quality Meter (SQM) photometers. The map is the first to cover the spatial distribution of the sky brightness in the center of the Iberian peninsula. These surveys are neccessary to test the light pollution models that predict night sky brightness as a function of the location and brightness of the sources of light pollution and the scattering of light in the atmosphere. We describe the data-retrieval methodology, which includes an automated procedure to measure from a moving vehicle in order to speed up the data collection, providing a denser and wider survey than previous works with similar time frames. We compare the night sky brightness map to the nocturnal radiance measured from space by the DMSP satellite. We find that i) a single source model is not enough to explain the radial evolution of the night sky brightness, despite the predominance of Madrid in size and population, and ii) that the orography of the region should be taken into account when deriving geo-specific models from general first-principles models. We show the tight relationship between these two luminance measures. This finding sets up an alternative roadmap to extended studies over the globe that will not require the local deployment of photometers or trained personnel.  
  Address Dept. Astrof´ısica y CC. de la Atm´osfera, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1323  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: