toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Barentine, J.C.; Kundracik, F.; Kocifaj, M.; Sanders, J.C.; Esquerdo, G.A.; Dalton, A.M.; Foott, B.; Grauer, A.; Tucker, S.; Kyba, C.C.M. url  doi
openurl 
  Title Recovering the city street lighting fraction from skyglow measurements in a large-scale municipal dimming experiment Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (down) 253 Issue Pages 107120  
  Keywords Skyglow; Remote Sensing  
  Abstract Anthropogenic skyglow dominates views of the natural night sky in most urban settings, and the associated emission of artificial light at night (ALAN) into the environment of cities involves a number of known and suspected negative externalities. One approach to lowering consumption of ALAN in cities is dimming or extinguishing publicly owned outdoor lighting during overnight hours; however, there are few reports in the literature about the efficacy of these programs. Here we report the results of one of the largest municipal lighting dimming experiments to date, involving ~ 20,000 roadway luminaires owned and operated by the City of Tucson, Arizona, U.S. We analyzed both single-channel and spatially resolved ground-based measurements of broadband night sky radiance obtained during the tests, determining that the zenith sky brightness during the tests decreased by ()% near the city center and ()% at an adjacent suburban location on nights when the output of the street lighting system was dimmed from 90% of its full power draw to 30% after local midnight. Modeling these changes with a radiative transfer code yields results suggesting that street lights account for about (14 ± 1)% of light emissions resulting in skyglow seen over the city. A separate derivation from first principles implies that street lighting contributes only % of light seen at the zenith over Tucson. We discuss this inconsistency and suggest routes for future work.  
  Address 3223 N 1st Ave, Tucson, AZ 85719; john(at)darksky.org  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Enlish Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2989  
Permanent link to this record
 

 
Author Bouroussis, C.A.; Topalis, F.V. url  doi
openurl 
  Title Assessment of outdoor lighting installations and their impact on light pollution using unmanned aircraft systems – The concept of the drone-gonio-photometer Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (down) 253 Issue Pages 107155  
  Keywords Instrumentation; Lighting  
  Abstract This paper presents the ongoing work of the lighting laboratory to develop a standardized method for the measurement of several types of lighting installations using unmanned aircraft systems. The technology of unmanned aircraft systems can incorporate multiple types of sensors and can be programmed to fly in predefined areas and routes in order to perform complex measurements with limited human intervention. This technology provides the freedom of measurements from several angular positions and altitudes in a fast, easy, accurate and repeatable way. The overall aim of this work is to assess the lighting installations, not only against the applicable lighting standards but also to investigate and reveal issues related to light pollution and obtrusive lighting. The latter are issues that in most cases are neglected due to the lack of standardized methods of calculation and measurement. Current assessment methods require illuminance or luminance measurements of horizontal and vertical surfaces generally from the ground. The proposed approach provides a holistic three-dimensional evaluation of the lighting installations beyond the common methods and geometries and opens the discussion for future update of the relevant standards on outdoor lighting. In the scope of this paper, several proof-of-concept cases are presented.  
  Address Lighting Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, 15780, Zografou, Athens, Greece; bouroussis(at)gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2996  
Permanent link to this record
 

 
Author Lamphar, H. url  doi
openurl 
  Title Spatio-temporal association of light pollution and urban sprawl using remote sensing imagery and GIS: A simple method based in Otsu's algorithm Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (down) 251 Issue Pages 107060  
  Keywords Remote Sensing  
  Abstract Automatic thresholding methods are used to detect spatio-temporal changes in the land subject to different natural and anthropogenic processes. Image segmentation plays an important role in this analysis, where urban sprawl detection take place with daylight images. However, recently some investigators have used nocturnal images in remote sensing imagery research. Such georeferenced data represent a good tool for analysis of the light pollution and urban sprawl. There are various physical processes involved in the radiative transfer of the light projected from the cities. Though, with a correct method based on background subtraction, any satellite remotely sensed nocturnal image can be useful in detecting urban sprawl. We base this work on thresholding processes of georeferenced nocturnal satellite images. We used a method combining digital classification techniques, geographic information systems and statistical analyzes. The proposed method is helpful because of a simple implementation and time saving. The pixel intensity of nocturnal images can offer a tool to calculate aspects related to electricity consumption and the efficiency of public lighting. We hope the results motivates other authors to study relationships with other social, natural and economic issues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2990  
Permanent link to this record
 

 
Author Kocifaj, M.; Kundracik, F. url  doi
openurl 
  Title Multi-wavelength radiometry of aerosols designed for more accurate night sky brightness predictions Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (down) 250 Issue Pages 106998  
  Keywords Skyglow; Remote Sensing  
  Abstract Scattering by aerosols and gases cause a certain fraction of artificial light emitted upwards is redirected to the ground. Of all atmospheric constituents just the aerosols are most important modulators of night-sky brightness under cloudless conditions. Unlike most of the previous we highlight a crucial role of solar radiometry for determining the atmospheric optical depth before night-time observation is to be made. Aerosol optical depth at visible wavelengths extracted from the data measured provides then the information on size distribution or mean refractive index of aerosol particles that in turn are both necessary to make night sky brightness prediction more accurate. Therefore, combining daytime and night-time radiometry we can achieve accuracy much higher than ever before. This is due to significantly reduced uncertainty in aerosol properties.

The aerosol data are retrieved from a new portable multi-wavelength optical analyzer that operates Ocean Optics spectrometer. The equipment provides the radiance data from 350 nm to 1000 nm with spectral resolution of 1 nm. Due to high sun radiance levels we use a system of mirrors each reducing the signal to about 4%, while keeping the integration time short. The minimum integration time of 3 ms allows for detection of direct sunlight. The system developed is sensitive to small changes in the aerosol system, while showing a good detection limit even under low turbidity conditions. The system performance is demonstrated in field experiment conducted shortly after front passage when most of aerosol particles is effectively removed by rain.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2906  
Permanent link to this record
 

 
Author Linares, H.; Masana, E.; Ribas, S.J.; Aubé, M.; Simoneau, A.; Bará, S. url  doi
openurl 
  Title Night sky brightness simulation over Montsec protected area Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (down) 249 Issue Pages 106990  
  Keywords Skyglow  
  Abstract Night sky brightness over Montsec Observatory (north-east of Spain) has been computed and checked against measurements using Illumina numerical model [2]. In a previous publication [20] the methodology was validated and light pollution received in the observatory coming from a unique city was computed. Here we present a simulation that includes all the sources that has a significant impact over the quality of the night sky in this area. The decision of which sources should be included in the simulations was taken following the methodology explained by [6]: using a point spread function (PSF) as a simple approach to estimate which sources are brightening the sky dome over the observer. An ad hoc PSF derived with Illumina was used with the purpose of avoiding to have to rely on already existing empirical PSF. The resulting PSF can be used in any location with similar atmospheric conditions. Differences in the spectrum of the lamps can be accounted easily by adjusting a spectrum scale factor. Illumina simulates the artificial sky brightness received (W/sr/m2) by an observer from any direction. Adding the natural sky brightness allows to compare the simulations to measurements taken with different instrumentation. In our case simulations were checked against ASTMON, SQC and SQM measurements. They show a good agreement both in absolute values and in geographical patterns for the three filters studied, B, V and R. The methodology presented opens many possibilities, such as increasing the reliability of the maps that point out the light pollution main contributors for any location, and reducing the amount of time needed to perform an accurate simulation of the night sky brightness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2923  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: