toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Orbach, D.N.; Fenton, B. url  doi
openurl 
  Title Vision impairs the abilities of bats to avoid colliding with stationary obstacles Type Journal Article
  Year 2010 Publication PloS one Abbreviated Journal PLoS One  
  Volume 5 Issue 11 Pages e13912  
  Keywords Analysis of Variance; Animals; Chiroptera/*physiology; Cyclonic Storms; Echolocation/*physiology; Female; Flight, Animal/*physiology; Light; Male; Space Perception/physiology/radiation effects; Vision, Ocular/*physiology/radiation effects; Vocalization, Animal/physiology  
  Abstract BACKGROUND: Free-flying insectivorous bats occasionally collide with stationary objects they should easily detect by echolocation and avoid. Collisions often occur with lighted objects, suggesting ambient light may deleteriously affect obstacle avoidance capabilities. We tested the hypothesis that free-flying bats may orient by vision when they collide with some obstacles. We additionally tested whether acoustic distractions, such as “distress calls” of other bats, contributed to probabilities of collision. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the role of visual cues in the collisions of free-flying little brown bats (Myotis lucifugus) with stationary objects, we set up obstacles in an area of high bat traffic during swarming. We used combinations of light intensities and visually dissimilar obstacles to verify that bats orient by vision. In early August, bats collided more often in the light than the dark, and probabilities of collision varied with the visibility of obstacles. However, the probabilities of collisions altered in mid to late August, coincident with the start of behavioural, hormonal, and physiological changes occurring during swarming and mating. Distress calls did not distract bats and increase the incidence of collisions. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that visual cues are more important for free-flying bats than previously recognized, suggesting integration of multi-sensory modalities during orientation. Furthermore, our study highlights differences between responses of captive and wild bats, indicating a need for more field experiments.  
  Address (up) Department of Biology, University of Western Ontario, London, Ontario, Canada. dnorbach@gmail.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21085481; PMCID:PMC2976695 Approved no  
  Call Number IDA @ john @ Serial 96  
Permanent link to this record
 

 
Author Riedel, C.S.; Georg, B.; Fahrenkrug, J.; Hannibal, J. url  doi
openurl 
  Title Altered light induced EGR1 expression in the SCN of PACAP deficient mice Type Journal Article
  Year 2020 Publication PloS one Abbreviated Journal PLoS One  
  Volume 15 Issue 5 Pages e0232748  
  Keywords Animals  
  Abstract The brain's biological clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus and generates circadian rhythms in physiology and behavior. The circadian clock needs daily adjustment by light to stay synchronized (entrained) with the astronomical 24 h light/dark cycle. Light entrainment occurs via melanopsin expressing retinal ganglion cells (mRGCs) and two neurotransmitters of the retinohypothalamic tract (RHT), PACAP and glutamate, which transmit light information to the SCN neurons. In SCN neurons, light signaling involves the immediate-early genes Fos, Egr1 and the clock genes Per1 and Per2. In this study, we used PACAP deficient mice to evaluate PACAP's role in light induced gene expression of EGR1 in SCN neurons during early (ZT17) and late (ZT23) subjective night at high (300 lux) and low (10 lux) white light exposure. We found significantly lower levels of both EGR1 mRNA and protein in the SCN in PACAP deficient mice compared to wild type mice at early subjective night (ZT17) exposed to low but not high light intensity. No difference was found between the two genotypes at late night (ZT23) at neither light intensities. In conclusion, light mediated EGR1 induction in SCN neurons at early night at low light intensities is dependent of PACAP signaling. A role of PACAP in shaping synaptic plasticity during light stimulation at night is discussed.  
  Address (up) Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32379800; PMCID:PMC7205239 Approved no  
  Call Number GFZ @ kyba @ Serial 2915  
Permanent link to this record
 

 
Author Dominoni, D.M.; Quetting, M.; Partecke, J. url  doi
openurl 
  Title Long-term effects of chronic light pollution on seasonal functions of European blackbirds (Turdus merula) Type Journal Article
  Year 2013 Publication PloS one Abbreviated Journal PLoS One  
  Volume 8 Issue 12 Pages e85069  
  Keywords Turdus merula; European blackbird; birds; animals; Reproduction  
  Abstract Light pollution is known to affect important biological functions of wild animals, including daily and annual cycles. However, knowledge about long-term effects of chronic exposure to artificial light at night is still very limited. Here we present data on reproductive physiology, molt and locomotor activity during two-year cycles of European blackbirds (Turdus merula) exposed to either dark nights or 0.3 lux at night. As expected, control birds kept under dark nights exhibited two regular testicular and testosterone cycles during the two-year experiment. Control urban birds developed testes faster than their control rural conspecifics. Conversely, while in the first year blackbirds exposed to light at night showed a normal but earlier gonadal cycle compared to control birds, during the second year the reproductive system did not develop at all: both testicular size and testosterone concentration were at baseline levels in all birds. In addition, molt sequence in light-treated birds was more irregular than in control birds in both years. Analysis of locomotor activity showed that birds were still synchronized to the underlying light-dark cycle. We suggest that the lack of reproductive activity and irregular molt progression were possibly the results of i) birds being stuck in a photorefractory state and/or ii) chronic stress. Our data show that chronic low intensities of light at night can dramatically affect the reproductive system. Future studies are needed in order to investigate if and how urban animals avoid such negative impact and to elucidate the physiological mechanisms behind these profound long-term effects of artificial light at night. Finally we call for collaboration between scientists and policy makers to limit the impact of light pollution on animals and ecosystems.  
  Address (up) Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell, Germany ; Department of Biology, University of Konstanz, Konstanz, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24376865; PMCID:PMC3869906 Approved no  
  Call Number IDA @ john @ Serial 49  
Permanent link to this record
 

 
Author Yasuniwa, Y.; Izumi, H.; Wang, K.-Y.; Shimajiri, S.; Sasaguri, Y.; Kawai, K.; Kasai, H.; Shimada, T.; Miyake, K.; Kashiwagi, E.; Hirano, G.; Kidani, A.; Akiyama, M.; Han, B.; Wu, Y.; Ieiri, I.; Higuchi, S.; Kohno, K. url  doi
openurl 
  Title Circadian disruption accelerates tumor growth and angio/stromagenesis through a Wnt signaling pathway Type Journal Article
  Year 2010 Publication PloS one Abbreviated Journal PLoS One  
  Volume 5 Issue 12 Pages e15330  
  Keywords Animals; *Circadian Rhythm; Disease Progression; *Gene Expression Regulation, Neoplastic; HeLa Cells; Humans; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Neoplasm Transplantation; Neoplasms/*pathology; *Neovascularization, Pathologic; Nerve Tissue Proteins/metabolism; Skin/metabolism; Vascular Endothelial Growth Factor A/metabolism; Wnt Proteins/*metabolism; Oncogenesis  
  Abstract Epidemiologic studies show a high incidence of cancer in shift workers, suggesting a possible relationship between circadian rhythms and tumorigenesis. However, the precise molecular mechanism played by circadian rhythms in tumor progression is not known. To identify the possible mechanisms underlying tumor progression related to circadian rhythms, we set up nude mouse xenograft models. HeLa cells were injected in nude mice and nude mice were moved to two different cases, one case is exposed to a 24-hour light cycle (L/L), the other is a more “normal” 12-hour light/dark cycle (L/D). We found a significant increase in tumor volume in the L/L group compared with the L/D group. In addition, tumor microvessels and stroma were strongly increased in L/L mice. Although there was a hypervascularization in L/L tumors, there was no associated increase in the production of vascular endothelial cell growth factor (VEGF). DNA microarray analysis showed enhanced expression of WNT10A, and our subsequent study revealed that WNT10A stimulates the growth of both microvascular endothelial cells and fibroblasts in tumors from light-stressed mice, along with marked increases in angio/stromagenesis. Only the tumor stroma stained positive for WNT10A and WNT10A is also highly expressed in keloid dermal fibroblasts but not in normal dermal fibroblasts indicated that WNT10A may be a novel angio/stromagenic growth factor. These findings suggest that circadian disruption induces the progression of malignant tumors via a Wnt signaling pathway.  
  Address (up) Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21203463; PMCID:PMC3009728 Approved no  
  Call Number IDA @ john @ Serial 162  
Permanent link to this record
 

 
Author Cheung, I.N.; Zee, P.C.; Shalman, D.; Malkani, R.G.; Kang, J.; Reid, K.J. url  doi
openurl 
  Title Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults Type Journal Article
  Year 2016 Publication PloS one Abbreviated Journal PLoS One  
  Volume 11 Issue 5 Pages e0155601  
  Keywords Human Health  
  Abstract Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism.  
  Address (up) Department of Neurology, Northwestern University, Chicago, Illinois, United States of America  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27191727 Approved no  
  Call Number LoNNe @ kyba @ Serial 1457  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: