toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Freitas, J.R. de; Bennie, J.; Mantovani, W.; Gaston, K.J. url  doi
openurl 
  Title Exposure of tropical ecosystems to artificial light at night: Brazil as a case study Type Journal Article
  Year 2017 Publication PloS one Abbreviated Journal PLoS One  
  Volume 12 Issue 2 Pages e0171655  
  Keywords Remote Sensing  
  Abstract Artificial nighttime lighting from streetlights and other sources has a broad range of biological effects. Understanding the spatial and temporal levels and patterns of this lighting is a key step in determining the severity of adverse effects on different ecosystems, vegetation, and habitat types. Few such analyses have been conducted, particularly for regions with high biodiversity, including the tropics. We used an intercalibrated version of the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) images of stable nighttime lights to determine what proportion of original and current Brazilian vegetation types are experiencing measurable levels of artificial light and how this has changed in recent years. The percentage area affected by both detectable light and increases in brightness ranged between 0 and 35% for native vegetation types, and between 0 and 25% for current vegetation (i.e. including agriculture). The most heavily affected areas encompassed terrestrial coastal vegetation types (restingas and mangroves), Semideciduous Seasonal Forest, and Mixed Ombrophilous Forest. The existing small remnants of Lowland Deciduous and Semideciduous Seasonal Forests and of Campinarana had the lowest exposure levels to artificial light. Light pollution has not often been investigated in developing countries but our data show that it is an environmental concern.  
  Address Environment & Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28178352; PMCID:PMC5298803 Approved no  
  Call Number LoNNe @ kyba @ Serial 1650  
Permanent link to this record
 

 
Author (up) Hale, J.D.; Davies, G.; Fairbrass, A.J.; Matthews, T.J.; Rogers, C.D.F.; Sadler, J.P. url  doi
openurl 
  Title Mapping lightscapes: spatial patterning of artificial lighting in an urban landscape Type Journal Article
  Year 2013 Publication PloS one Abbreviated Journal PLoS One  
  Volume 8 Issue 5 Pages e61460  
  Keywords *Cities; England; Environmental Pollution; Geographic Mapping; Humans; Light; *Lighting; Photography; Urban Population; *Urbanization  
  Abstract Artificial lighting is strongly associated with urbanisation and is increasing in its extent, brightness and spectral range. Changes in urban lighting have both positive and negative effects on city performance, yet little is known about how its character and magnitude vary across the urban landscape. A major barrier to related research, planning and governance has been the lack of lighting data at the city extent, particularly at a fine spatial resolution. Our aims were therefore to capture such data using aerial night photography and to undertake a case study of urban lighting. We present the finest scale multi-spectral lighting dataset available for an entire city and explore how lighting metrics vary with built density and land-use. We found positive relationships between artificial lighting indicators and built density at coarse spatial scales, whilst at a local level lighting varied with land-use. Manufacturing and housing are the primary land-use zones responsible for the city's brightly lit areas, yet manufacturing sites are relatively rare within the city. Our data suggests that efforts to address light pollution should broaden their focus from residential street lighting to include security lighting within manufacturing areas.  
  Address School of Geography, Earth and Environmental Sciences, The University of Birmingham, Birmingham, West Midlands, United Kingdom. j.hale@bham.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23671566; PMCID:PMC3646000 Approved no  
  Call Number IDA @ john @ Serial 209  
Permanent link to this record
 

 
Author (up) Inger, R.; Bennie, J.; Davies, T.W.; Gaston, K.J. url  doi
openurl 
  Title Potential biological and ecological effects of flickering artificial light Type Journal Article
  Year 2014 Publication PloS one Abbreviated Journal PLoS One  
  Volume 9 Issue 5 Pages e98631  
  Keywords flickering; artificial light; biology  
  Abstract Organisms have evolved under stable natural lighting regimes, employing cues from these to govern key ecological processes. However, the extent and density of artificial lighting within the environment has increased recently, causing widespread alteration of these regimes. Indeed, night-time electric lighting is known significantly to disrupt phenology, behaviour, and reproductive success, and thence community composition and ecosystem functioning. Until now, most attention has focussed on effects of the occurrence, timing, and spectral composition of artificial lighting. Little considered is that many types of lamp do not produce a constant stream of light but a series of pulses. This flickering light has been shown to have detrimental effects in humans and other species. Whether a species is likely to be affected will largely be determined by its visual temporal resolution, measured as the critical fusion frequency. That is the frequency at which a series of light pulses are perceived as a constant stream. Here we use the largest collation to date of critical fusion frequencies, across a broad range of taxa, to demonstrate that a significant proportion of species can detect such flicker in widely used lamps. Flickering artificial light thus has marked potential to produce ecological effects that have not previously been considered.  
  Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24874801; PMCID:PMC4038456 Approved no  
  Call Number IDA @ john @ Serial 237  
Permanent link to this record
 

 
Author (up) Kyba, C.C.M.; Ruhtz, T.; Fischer, J.; Hölker, F. url  doi
openurl 
  Title Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems Type Journal Article
  Year 2011 Publication PloS one Abbreviated Journal PLoS One  
  Volume 6 Issue 3 Pages e17307  
  Keywords Berlin; *Cities; *Ecosystem; Environmental Pollution/*adverse effects/analysis; *Light; Seasons; *Weather  
  Abstract The diurnal cycle of light and dark is one of the strongest environmental factors for life on Earth. Many species in both terrestrial and aquatic ecosystems use the level of ambient light to regulate their metabolism, growth, and behavior. The sky glow caused by artificial lighting from urban areas disrupts this natural cycle, and has been shown to impact the behavior of organisms, even many kilometers away from the light sources. It could be hypothesized that factors that increase the luminance of the sky amplify the degree of this “ecological light pollution”. We show that cloud coverage dramatically amplifies the sky luminance, by a factor of 10.1 for one location inside of Berlin and by a factor of 2.8 at 32 km from the city center. We also show that inside of the city overcast nights are brighter than clear rural moonlit nights, by a factor of 4.1. These results have important implications for choronobiological and chronoecological studies in urban areas, where this amplification effect has previously not been considered.  
  Address Institute for Space Sciences, Freie Universitat Berlin, Berlin, Germany. christopher.kyba@wew.fu-berlin.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21399694; PMCID:PMC3047560 Approved no  
  Call Number IDA @ john @ Serial 20  
Permanent link to this record
 

 
Author (up) Lacoeuilhe, A.; Machon, N.; Julien, J.-F.; Le Bocq, A.; Kerbiriou, C. url  doi
openurl 
  Title The influence of low intensities of light pollution on bat communities in a semi-natural context Type Journal Article
  Year 2014 Publication PloS one Abbreviated Journal PLoS One  
  Volume 9 Issue 10 Pages e103042  
  Keywords Animals; mammals; Vertebrates; bats; light pollution; foraging strategy  
  Abstract Anthropogenic light pollution is an increasingly significant issue worldwide. Over the past century, the use of artificial lighting has increased in association with human activity. Artificial lights are suspected to have substantial effects on the ecology of many species, e.g., by producing discontinuities in the territories of nocturnal animals. We analyzed the potential influence of the intensity and type of artificial light on bat activity in a semi-natural landscape in France. We used a species approach, followed by a trait-based approach, to light sensitivity. We also investigated whether the effect of light could be related to foraging traits. We performed acoustic surveys at sites located along a gradient of light intensities to assess the activity of 15 species of bats. We identified 2 functional response groups of species: one group that was light-tolerant and one group that was light-intolerant. Among the species in the latter group that appear to be disadvantaged by lighting conditions, many are rare and threatened in Europe, whereas the species from the former group are better able to thrive in disturbed habitats such as lighted areas and may actually benefit from artificial lighting. Finally, several methods of controlling light pollution are suggested for the conservation of bat communities. Recommendations for light management and the creation of dim-light corridors are proposed; these strategies may play an important role in protecting against the impact of light pollution on nocturnal animals.  
  Address National Museum of Natural History, Ecology and Sciences Conservation Center, CESCO-UMR7204 MNHN-CNRS-UPMC, Paris, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:25360638; PMCID:PMC4215844 Approved no  
  Call Number IDA @ john @ Serial 1066  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: