toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Jong, M.; Ouyang, J.Q.; van Grunsven, R.H.A.; Visser, M.E.; Spoelstra, K. url  doi
openurl 
  Title Do Wild Great Tits Avoid Exposure to Light at Night? Type Journal Article
  Year 2016 Publication PloS one Abbreviated Journal PLoS One  
  Volume (down) 11 Issue 6 Pages e0157357  
  Keywords birds; animals; behaviour  
  Abstract Studies of wild populations have provided important insights into the effects of artificial light at night on organisms, populations and ecosystems. However, in most studies the exact amount of light at night individuals are exposed to remains unknown. Individuals can potentially control their nighttime light exposure by seeking dark spots within illuminated areas. This uncertainty makes it difficult to attribute effects to a direct effect of light at night, or to indirect effects, e.g., via an effect of light at night on food availability. In this study, we aim to quantify the nocturnal light exposure of wild birds in a previously dark forest-edge habitat, experimentally illuminated with three different colors of street lighting, in comparison to a dark control. During two consecutive breeding seasons, we deployed male great tits (Parus major) with a light logger measuring light intensity every five minutes over a 24h period. We found that three males from pairs breeding in brightly illuminated nest boxes close to green and red lamp posts, were not exposed to more artificial light at night than males from pairs breeding further away. This suggests, based on our limited sample size, that these males could have been avoiding light at night by choosing a roosting place with a reduced light intensity. Therefore, effects of light at night previously reported for this species in our experimental set-up might be indirect. In contrast to urban areas where light is omnipresent, bird species in non-urban areas may evade exposure to nocturnal artificial light, thereby avoiding direct consequences of light at night.  
  Address Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27355354; PMCID:PMC4927185 Approved no  
  Call Number LoNNe @ schroer @ Serial 1664  
Permanent link to this record
 

 
Author Yonezawa, T.; Uchida, M.; Tomioka, M.; Matsuki, N. url  doi
openurl 
  Title Lunar Cycle Influences Spontaneous Delivery in Cows Type Journal Article
  Year 2016 Publication PloS one Abbreviated Journal PLoS One  
  Volume (down) 11 Issue 8 Pages e0161735  
  Keywords Moonlight; Animals  
  Abstract There is a popular belief that the lunar cycle influences spontaneous delivery in both humans and cattle. To assess this relationship, we investigated the synodic distribution of spontaneous deliveries in domestic Holstein cows. We used retrospective data from 428 spontaneous, full-term deliveries within a three-year period derived from the calving records of a private farm in Hokkaido, Japan. Spontaneous birth frequency increased uniformly from the new moon to the full moon phase and decreased until the waning crescent phase. There was a statistically significant peak between the waxing gibbous and full moon phases compared with those between the last quarter and the waning crescent. These changes were clearly observed in deliveries among multiparous cows, whereas they were not evident in deliveries among nulliparous cows. These data suggest the utility of dairy cows as models for bio-meteorological studies, and indicate that monitoring lunar phases may facilitate comprehensive understanding of parturition.  
  Address Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27580019; PMCID:PMC5006988 Approved no  
  Call Number GFZ @ kyba @ Serial 2082  
Permanent link to this record
 

 
Author Szaz, D.; Horvath, G.; Barta, A.; Robertson, B.A.; Farkas, A.; Egri, A.; Tarjanyi, N.; Racz, G.; Kriska, G. url  doi
openurl 
  Title Lamp-Lit Bridges as Dual Light-Traps for the Night-Swarming Mayfly, Ephoron virgo: Interaction of Polarized and Unpolarized Light Pollution Type Journal Article
  Year 2015 Publication PloS one Abbreviated Journal PLoS One  
  Volume (down) 10 Issue 3 Pages e0121194  
  Keywords Animals  
  Abstract Ecological photopollution created by artificial night lighting can alter animal behavior and lead to population declines and biodiversity loss. Polarized light pollution is a second type of photopollution that triggers water-seeking insects to ovisposit on smooth and dark man-made objects, because they simulate the polarization signatures of natural water bodies. We document a case study of the interaction of these two forms of photopollution by conducting observations and experiments near a lamp-lit bridge over the river Danube that attracts mass swarms of the mayfly Ephoron virgo away from the river to oviposit on the asphalt road of the bridge. Millions of mayflies swarmed near bridge-lights for two weeks. We found these swarms to be composed of 99% adult females performing their upstream compensatory flight and were attracted upward toward unpolarized bridge-lamp light, and away from the horizontally polarized light trail of the river. Imaging polarimetry confirmed that the asphalt surface of the bridge was strongly and horizontally polarized, providing a supernormal ovipositional cue to Ephoron virgo, while other parts of the bridge were poor polarizers of lamplight. Collectively, we confirm that Ephoron virgo is independently attracted to both unpolarized and polarized light sources, that both types of photopollution are being produced at the bridge, and that spatial patterns of swarming and oviposition are consistent with evolved behaviors being triggered maladaptively by these two types of light pollution. We suggest solutions to bridge and lighting design that should prevent or mitigate the impacts of such scenarios in the future. The detrimental impacts of such scenarios may extend beyond Ephoron virgo.  
  Address Danube Research Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Budapest, Hungary; Group for Methodology in Biology Teaching, Biological Institute, Eotvos University, Budapest, Hungary  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:25815748 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 1145  
Permanent link to this record
 

 
Author Pan, J.; Yang, Y.; Yang, B.; Dai, W.; Yu, Y. url  doi
openurl 
  Title Human-Friendly Light-Emitting Diode Source Stimulates Broiler Growth Type Journal Article
  Year 2015 Publication PloS one Abbreviated Journal PLoS One  
  Volume (down) 10 Issue 8 Pages e0135330  
  Keywords Animals  
  Abstract Previous study and our laboratory have reported that short-wavelength (blue and green) light and combination stimulate broiler growth. However, short-wavelength stimuli could have negative effects on poultry husbandry workers. The present study was conducted to evaluate the effects of human-friendly yellow LED light, which is acceptable to humans and close to green light, on broiler growth. We also aimed to investigate the potential quantitative relationship between the wavelengths of light used for artificial illumination and growth parameters in broilers. After hatching, 360 female chicks (“Meihuang” were evenly divided into six lighting treatment groups: white LED strips (400-700 nm, WL); red LED strips (620 nm, RL); yellow LED strips (580 nm, YL); green LED strips (514 nm, GL); blue LED strips (455 nm, BL); and fluorescent strips (400-700 nm, FL). From 30 to 72 days of age, broilers reared under YL and GL were heavier than broilers treated with FL (P < 0.05). Broilers reared under YL obtained the similar growth parameters with the broilers reared under GL and BL (P > 0.05). Moreover, YL significantly improved feeding efficiency when compared with GL and BL at 45 and 60 days of age (P < 0.05). In addition, we found an age-dependent effect of light spectra on broiler growth and a quantitative relationship between LED light spectra (455 to 620 nm) and the live body weights of broilers. The wavelength of light (455 to 620 nm) was found to be negatively related (R2 = 0.876) to live body weight at an early stage of development, whereas the wavelength of light (455 to 620 nm) was found to be positively correlated with live body weight (R2 = 0.925) in older chickens. Our results demonstrated that human-friendly yellow LED light (YL), which is friendly to the human, can be applied to the broilers production.  
  Address College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26270988 Approved no  
  Call Number LoNNe @ kyba @ Serial 1241  
Permanent link to this record
 

 
Author Cohen, J.H.; Berge, J.; Moline, M.A.; Sorensen, A.J.; Last, K.; Falk-Petersen, S.; Renaud, P.E.; Leu, E.S.; Grenvald, J.; Cottier, F.; Cronin, H.; Menze, S.; Norgren, P.; Varpe, O.; Daase, M.; Darnis, G.; Johnsen, G. url  doi
openurl 
  Title Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton? Type Journal Article
  Year 2015 Publication PloS one Abbreviated Journal PLoS One  
  Volume (down) 10 Issue 6 Pages e0126247  
  Keywords Animals  
  Abstract The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79 degrees N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1-1.5 x 10-5 mumol photons m-2 s-1 (400-700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20-30m depth during the Arctic polar night.  
  Address The University Centre in Svalbard, 9171, Longyearbyen, Norway; Applied Underwater Robotics Lab, Depts of Biology and Marine Technology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26039111; PMCID:PMC4454649 Approved no  
  Call Number LoNNe @ kyba @ Serial 1277  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: