toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links (down)
Author Kocifaj, M.; Petrzala, J. url  doi
  Title Rapid approach to the quantitative determination of nocturnal ground irradiance in populated territories: a clear-sky case Type Journal Article
  Year 2016 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. R. Astron. Soc.  
  Volume 462 Issue 3 Pages 2739-2746  
  Keywords Skyglow  
  Abstract A zero-order approach to the solving of the radiative transfer equation and a method for obtaining the horizontal diffuse irradiance at night-time are both developed and intended for wide use in numerical predictions of nocturnal ground irradiance in populated territories. Downward diffuse radiative fluxes are computed with a two-stream approximation, and the data products obtained are useful for scientists who require rapid estimations of illumination levels during the night. The rapid technique presented here is especially important when the entire set of calculations is to be repeated for different lighting technologies and/or radiant intensity distributions with the aim of identifying high-level illuminance/irradiance, the spectral composition of scattered light or other optical properties of diffuse light at the ground level. The model allows for the computation of diffuse horizontal irradiance due to light emissions from ground-based sources with arbitrary spectral compositions. The optical response of a night sky is investigated using the ratio of downward to upward irradiance, R⊥, λ(0). We show that R⊥, λ(0) generally peaks at short wavelengths, thus suggesting that, e.g., the blue light of an LED lamp would make the sky even more bluish. However, this effect can be largely suppressed or even removed with the spectral sensitivity function of the average human eye superimposed on to the lamp spectrum. Basically, blue light scattering dominates at short optical distances, while red light is transmitted for longer distances and illuminates distant places. Computations are performed for unshielded as well as fully shielded lights, while the spectral function R⊥, λ(0) is tabulated to make possible the modelling of various artificial lights, including those not presented here.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1517  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: