toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Cai, W.; Yue, J.; Dai, Q.; Hao, L.; Lin, Y.; Shi, W.; Huang, Y.; Wei, M. url  doi
openurl 
  Title The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design Type Journal Article
  Year 2018 Publication Building and Environment Abbreviated Journal Building and Environment  
  Volume in press Issue Pages  
  Keywords Lighting  
  Abstract Recently, corneal illuminance attracts much attention because it is closely related to important functions of indoor lighting. Especially, applying circadian light in the built environment places a challenging requirement on indirect corneal illuminance. In this work, rule-of-thumb equations are proposed to guide circadian lighting design: (i) for artificial lighting, Ecor,avg (i) = (Φ/C1) · ρ/(1−ρ′), where Ecor,avg (i) is the average indirect corneal illuminance at standing or sitting positions, Φ is the initial flux from luminaires, C1 is a constant comparable to the total room surface area, ρ is the reflectance of the surface where the first reflection occurs, and ρ′ is the area-weighted average of surface reflectance; and (ii) for daylighting, Ecor,avg (i) = C2 · WWR · ρ/(1−ρ′), where C2 is a constant, and WWR represents the window-to-wall ratio.

The equations above are validated by comparing against numerical simulation data obtained with the Radiance software. For artificial lighting simulation, various combinations of room surface reflectance, initial light distribution, and WWR are investigated; and for daylighting simulation, different combinations of surface reflectance, WWR, and geographic location are analyzed. The good fits to simulation data indicate that the proposed simple equations can provide reasonably accurate results for quick feedback at the field. It is also demonstrated that room surface reflectance has a dominant impact on indirect corneal illuminance. The approach of improving surface reflectance is more favorable than increasing luminaire flux or expanding window area, and therefore should be the recommended approach to achieve quality and efficient circadian lighting.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-1323 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1929  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: