toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Miller, S.D.; Straka III, W.C.; Yue, J.; Seaman, C.J.; Xu, S.; Elvidge, C.D.; Hoffmann, L.; Azeem, I. url  doi
openurl 
  Title The Dark Side of Hurricane Matthew: Unique Perspectives from the VIIRS Day/Night Band Type Journal Article
  Year 2018 Publication Bulletin of the American Meteorological Society Abbreviated Journal Bull. Amer. Meteor. Soc.  
  Volume in press Issue Pages  
  Keywords remote sensing  
  Abstract Hurricane Matthew (28 Sep – 9 October 2016) was perhaps the most infamous storm of the 2016 Atlantic hurricane season, claiming over 600 lives and causing over $15 billion USD in damages across the central Caribbean and southeastern U.S. seaboard. Research surrounding Matthew and its many noteworthy meteorological characteristics (e.g., rapid intensification into the southernmost Category 5 hurricane in the Atlantic basin on record, strong lightning and sprite production, and unusual cloud morphology) is ongoing. Satellite remote sensing typically plays an important role in the forecasting and study of hurricanes, providing a top-down perspective on storms developing over the remote and inherently data sparse tropical oceans. In this regard, a relative newcomer among the suite of satellite observations useful for tropical cyclone monitoring and research is the Visible/Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB), a sensor flying onboard the NOAA/NASA Suomi National Polar-orbiting Partnership (SNPP) satellite. Unlike conventional instruments, the DNB's sensitivity to extremely low levels of visible/near-infrared light offers new insight on storm properties and impacts. Here, we chronicle Matthew’s path of destruction and peer through the DNB’s looking glass of low-light visible observations, including lightning connected to sprite formation, modulation of the atmospheric nightglow by storm-generated gravity waves, and widespread power outages. Collected without moonlight, these examples showcase the wealth of unique information present in DNB nocturnal low-light observations without moonlight, and their potential to complement traditional satellite measurements of tropical storms worldwide.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 0003-0007 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1959  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: