toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Bará, S.; Aubé, M.; Barentine, J.; Zamorano, J. url  doi
openurl 
  Title Magnitude to luminance conversions and visual brightness of the night sky Type Journal Article
  Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS  
  Volume 493 Issue 2 Pages 2429–2437  
  Keywords Skyglow; light pollution; atmospheric effects; techniques: photometric; methods: numerical; luminance  
  Abstract (up) The visual brightness of the night sky is not a single-valued function of its brightness in other photometric bands, because the transformations between photometric systems depend on the spectral power distribution of the skyglow. We analyze the transformation between the night sky brightness in the Johnson-Cousins V band (mV, measured in magnitudes per square arcsecond, mpsas) and its visual luminance (L, in SI units cd m−2) for observers with photopic and scotopic adaptation, in terms of the spectral power distribution of the incident light. We calculate the zero-point luminances for a set of skyglow spectra recorded at different places in the world, including strongly light-polluted locations and sites with nearly pristine natural dark skies. The photopic skyglow luminance corresponding to mV = 0.00 mpsas is found to vary between 1.11–1.34 × 105 cd m−2 if mV is reported in the absolute (AB) magnitude scale, and between 1.18–1.43 × 105 cd m−2 if a Vega scale for mV is used instead. The photopic luminance for mV = 22.0 mpsas is correspondingly comprised between 176 and 213 μcd m−2 (AB), or 187 and 227 μcd m−2 (Vega). These constants tend to decrease for increasing correlated color temperatures (CCT). The photopic zero-point luminances are generally higher than the ones expected for blackbody radiation of comparable CCT. The scotopic-to-photopic luminance ratio (S/P) for our spectral dataset varies from 0.8 to 2.5. Under scotopic adaptation the dependence of the zero-point luminances with the CCT, and their values relative to blackbody radiation, are reversed with respect to photopic ones.  
  Address Departamento de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia; salva.bara(at)usc.gal  
  Corporate Author Thesis  
  Publisher Oxford Academic Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2825  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: