toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Gatford, K.L.; Kennaway, D.J.; Liu, H.; Kleemann, D.O.; Kuchel, T.R.; Varcoe, T.J. url  doi
openurl 
  Title Simulated shift work disrupts maternal circadian rhythms and metabolism, and increases gestation length in sheep Type Journal Article
  Year 2019 Publication The Journal of Physiology Abbreviated Journal J Physiol  
  Volume 597 Issue 7 Pages 1889-1904  
  Keywords Animals; *Circadian Rhythm; Female; Fetal Development; Pregnancy; *Pregnancy, Animal/physiology; Pregnancy, Multiple; Sheep/*physiology; *Shift Work Schedule; Sleep/*physiology; *circadian rhythms; *fetus; *maternal; *pregnancy; *sheep; *shift work  
  Abstract KEY POINTS: Shift work impairs metabolic health, although its effects during pregnancy are not well understood We evaluated the effects of a simulated shift work protocol for one-third, two-thirds or all of pregnancy on maternal and pregnancy outcomes in sheep. Simulated shift work changed the timing of activity, disrupted hormonal and cellular rhythms, and impaired maternal glucose tolerance during early pregnancy. Gestation length was increased in twin pregnancies, whereas singleton lambs were lighter at a given gestational age if mothers were subjected to shift work conditions in the first one-third of pregnancy. Exposure to rotating night and day shifts, even if only in early pregnancy, may adversely affect maternal metabolic and pregnancy outcomes. ABSTRACT: Shift workers are at increased risk of developing type 2 diabetes and obesity; however, the impact during pregnancy on maternal metabolism is unknown. Using a large animal model, we assessed the impact of simulated shift work (SSW) exposure during pregnancy on maternal circadian rhythms, glucose tolerance and pregnancy outcomes. Following mating, ewes were randomly allocated to a control photoperiod (CON 12 h light, 12 h dark) or to SSW, where the timing of light exposure and food presentation was reversed twice each week for one-third, two-thirds or all of pregnancy. Maternal behaviour followed SSW cycles with increased activity during light exposure and feeding. Melatonin rhythms resynchronized within 2 days of the photoperiod shift, whereas peripheral circadian rhythms were arrhythmic. SSW impaired glucose tolerance (+29%, P = 0.019) and increased glucose-stimulated insulin secretion (+32%, P = 0.018) in ewes with a singleton fetus in early but not late gestation. SSW exposure did not alter rates of miscarriage or stillbirth, although it extended gestation length in twin pregnancies (+2.4 days, P = 0.032). Relative to gestational age, birth weight was lower in singleton progeny of SSW than CON ewes (-476 g, P = 0.016). These results have implications for the large number of women currently engaged in shift work, and further studies are required to determine progeny health impacts.  
  Address Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3751 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30671970; PMCID:PMC6441904 Approved no  
  Call Number GFZ @ kyba @ Serial 3136  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: