toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Justice, M.J.; Justice, T.C. url  doi
openurl 
  Title Attraction of Insects to Incandescent, Compact Fluorescent, Halogen, and Led Lamps in a Light Trap: Implications for Light Pollution and Urban Ecologies Type Journal Article
  Year 2016 Publication Entomological News Abbreviated Journal (up) Entomological News  
  Volume 125 Issue 5 Pages 315-326  
  Keywords Animals; Ecology  
  Abstract The widespread use of electric lamps has created “ecological light pollution” and “artificial light ecology.” Given the important role of insects in ecosystems, how they are affected by light pollution deserves attention. Lamps designed for lighting small areas around residences are used in abundance, but studies specifically examining them are scarce. This study used a light trap to capture insects for 60 summer nights in a suburban town in Virginia, USA. During each night of trapping, one of five different light bulbs was used in the trap (incandescent, compact fluorescent, halogen, warm color temperature LED, or cool color temperature LED). The data suggest that fewer insects overall are attracted to bulbs using LED technology than bulbs using incandescent technology. This difference was also observed in the orders Lepidoptera and Diptera. These results support the use of LED bulbs to reduce the insect attraction and mortality caused by the use of artificial lights at night.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-872X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1419  
Permanent link to this record
 

 
Author Fallows, C.; Fallows, M.; Hammerschlag, N. url  doi
openurl 
  Title Effects of lunar phase on predator-prey interactions between white shark (Carcharodon carcharias) and Cape fur seals (Arctocephalus pusillus pusillus) Type Journal Article
  Year 2016 Publication Environmental Biology of Fishes Abbreviated Journal (up) Environ Biol Fish  
  Volume 99 Issue 11 Pages 805-812  
  Keywords Moonlight; Animals  
  Abstract Predator-prey relationships can be influenced by environmental conditions, including changes in moon phase and associated lunar illumination. Two primary hypotheses have been proposed underlying the effects of moonlight on predator-prey interactions: the predation risk hypothesis and visual acuity hypothesis. However, few studies have tested these hypotheses during twilight hours or involved large mobile aquatic species. In the present study, we evaluated these hypotheses using data collected over 16 years on predator-prey interactions between white shark (Carcharodon carcharias) and Cape fur seals (Arctocephalus pusillus pusillus) at sunrise. Data from 1476 natural predation events demonstrated shark attack frequency and seal capture success was significantly higher at sunrise during periods of low (0–10 %) versus high (90–100 %) lunar illumination, which is consistent with the visual acuity hypothesis. We propose that during full moon periods, white sharks at night are at a visual and tactical advantage over seals which are silhouetted at the surface in the moonlight and thus easier to isolate in darkness, while sharks remain camouflaged hunting from below through deep water. However, at sunrise, we hypothesize this advantage shifts to seals as the added lunar illumination, combined with emerging sunlight, may decrease shark stealth and increase the ability of seals to detect and avoid sharks. These finding suggest that lunar effects on predator-prey dynamics can be context specific, likely moderated by visual acuity of predators and prey which may change according to the photoperiod.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-1909 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number UP @ altintas1 @ Serial 3141  
Permanent link to this record
 

 
Author Shafiei Sabet, S.; Van Dooren, D.; Slabbekoorn, H. url  doi
openurl 
  Title Son et lumiere: Sound and light effects on spatial distribution and swimming behavior in captive zebrafish Type Journal Article
  Year 2016 Publication Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal (up) Environ Pollut  
  Volume 212 Issue Pages 480-488  
  Keywords Animals  
  Abstract Aquatic and terrestrial habitats are heterogeneous by nature with respect to sound and light conditions. Fish may extract signals and exploit cues from both ambient modalities and they may also select their sound and light level of preference in free-ranging conditions. In recent decades, human activities in or near water have altered natural soundscapes and caused nocturnal light pollution to become more widespread. Artificial sound and light may cause anxiety, deterrence, disturbance or masking, but few studies have addressed in any detail how fishes respond to spatial variation in these two modalities. Here we investigated whether sound and light affected spatial distribution and swimming behavior of individual zebrafish that had a choice between two fish tanks: a treatment tank and a quiet and light escape tank. The treatments concerned a 2 x 2 design with noisy or quiet conditions and dim or bright light. Sound and light treatments did not induce spatial preferences for the treatment or escape tank, but caused various behavioral changes in both spatial distribution and swimming behavior within the treatment tank. Sound exposure led to more freezing and less time spent near the active speaker. Dim light conditions led to a lower number of crossings, more time spent in the upper layer and less time spent close to the tube for crossing. No interactions were found between sound and light conditions. This study highlights the potential relevance for studying multiple modalities when investigating fish behavior and further studies are needed to investigate whether similar patterns can be found for fish behavior in free-ranging conditions.  
  Address Behavioral Biology, Institute of Biology Leiden (IBL), Leiden University, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26963699 Approved no  
  Call Number LoNNe @ kyba @ Serial 1369  
Permanent link to this record
 

 
Author Raap, T.; Pinxten, R.; Eens, M. url  doi
openurl 
  Title Artificial light at night disrupts sleep in female great tits (Parus major) during the nestling period, and is followed by a sleep rebound Type Journal Article
  Year 2016 Publication Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal (up) Environ Pollut  
  Volume 215 Issue Pages 125-134  
  Keywords Biology  
  Abstract Artificial light at night has been linked to a wide variety of physiological and behavioural consequences in humans and animals. Given that little is known about the impact of light pollution on sleep in wild animals, we tested how experimentally elevated light levels affected sleep behaviour of female songbirds rearing 10 day old chicks. Using a within-subject design, individual sleep behaviour was observed over three consecutive nights in great tits (Parus major), with females sleeping in a natural dark situation on the first and third night, whereas on the second night they were exposed to a light-emitting diode (1.6 lux). Artificial light in the nest box dramatically and significantly affected sleep behaviour, causing females to fall asleep later (95 min; while entry time was unaffected), wake up earlier (74 min) and sleep less (56%). Females spent a greater proportion of the night awake and the frequency of their sleep bouts decreased, while the length of their sleep bouts remained equal. Artificial light also increased begging of chicks at night, which may have contributed to the sleep disruption in females or vice versa. The night following the light treatment, females slept 25% more compared to the first night, which was mainly achieved by increasing the frequency of sleep bouts. Although there was a consistent pattern in how artificial light affected sleep, there was also large among-individual variation in how strongly females were affected. When comparing current results with a similar experiment during winter, our results highlight differences in effects between seasons and underscore the importance of studying light pollution during different seasons. Our study shows that light pollution may have a significant impact on sleep behaviour in free-living animals during the reproductive season, which may provide a potential mechanism by which artificial light affects fitness.  
  Address Department of Biology, Behavioural Ecology & Ecophysiology Group, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27179331 Approved no  
  Call Number LoNNe @ kyba @ Serial 1451  
Permanent link to this record
 

 
Author Raap, T.; Casasole, G.; Pinxten, R.; Eens, M. url  doi
openurl 
  Title Early life exposure to artificial light at night affects the physiological condition: An experimental study on the ecophysiology of free-living nestling songbirds Type Journal Article
  Year 2016 Publication Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal (up) Environ Pollut  
  Volume 218 Issue Pages 909-914  
  Keywords Animals  
  Abstract Light pollution or artificial light at night (ALAN) is increasingly recognised to be an important anthropogenic environmental pressure on wildlife, affecting animal behaviour and physiology. Early life experiences are extremely important for the development, physiological status and health of organisms, and as such, early exposure to artificial light may have detrimental consequences for organism fitness. We experimentally manipulated the light environment of free-living great tit nestlings (Parus major), an important model species in evolutionary and environmental research. Haptoglobin (Hp) and nitric oxide (NOx), as important indicators of immunity, health, and physiological condition, were quantified in nestlings at baseline (13 days after hatching) and after a two night exposure to ALAN. We found that ALAN increased Hp and decreased NOx. ALAN may increase stress and oxidative stress and reduce melatonin which could subsequently lead to increased Hp and decreased NOx. Haptoglobin is part of the immune response and mounting an immune response is costly in energy and resources and, trade-offs are likely to occur with other energetically demanding tasks, such as survival or reproduction. Acute inhibition of NOx may have a cascading effect as it also affects other physiological aspects and may negatively affect immunocompetence. The consequences of the observed effects on Hp and NOx remain to be examined. Our study provides experimental field evidence that ALAN affects nestlings' physiology during development and early life exposure to ALAN could therefore have long lasting effects throughout adulthood.  
  Address Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27531621 Approved no  
  Call Number LoNNe @ kyba @ Serial 1514  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: