toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Grove, L. pdf  url
openurl 
  Title Reducing Acadia's Light Pollution Type Manuscript
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Conservation; Society; Economics; Acadia National Park; Maine; benefit cost analysis; astrotourism; contingent valuation method; dark sky places; dark sky park  
  Abstract (up) Acadia National Park is among the most visited national parks in the United States, attracting millions of people per year. Thousands of those visitors come to the park for “astro-tourism,” as Acadia has become one of the premier stargazing locations on the east coast. There remains, however, the continued threat from light pollution from the surrounding communities that negatively affects Acadia's darkness, contributing to a lesser visitor experience and potentially harming native ecosystems. Although park management and community organizations have engaged in significant efforts to decrease Acadia's nighttime light levels and raise awareness among visitors and locals regarding the importance of darkness, the park still seek to continue to decrease light pollution. This report developed policy options that could help solve the long-term policy goal of decreasing nighttime lighting levels within and around Acadia while also using the International Dark-Sky Association's Dark-Sky Park designation requirements as a reasonable, short-term policy benchmark.

Working within existing organizations, the policy options crafted to address Acadia’s nighttime lighting levels were analyzed both qualitatively through a criteria evaluation and quantitatively through a Benefit Cost Analysis.

The options included 1) the formation of a Darkness Coalition within the League of Towns, 2) a reimagining of the Worcester Polytechnic Institute Dark-Sky Project into the Dark-Sky Taskforce, 3) the creation of a Lighting Consultant position paid through the Friends of Acadia Wild Acadia initiative, and 4) the combination of Coalition and the Taskforce into the League of Towns – Dark-Sky Partnership (LOT-DSP). The report recommends the adoption of Option 4 – the creation of the LOT – DSP. While this option does not provide the greatest estimated monetary net value compared to the Status Quo in the quantitative evaluation, it still provides an estimated benefit of about $105 million over the course of five years and is the strongest option in the qualitative analysis. The LOT – DSP provides the best opportunity for Acadia to achieve legitimate and long-lasting nighttime light level reduction.
 
  Address Frank Batten School of Leadership and Public Policy, Garrett Hall, 235 McCormick Road, P.O. Box 400893, Charlottesville, VA 22904-4893 USA; locher.grove(at)gmail.com  
  Corporate Author Thesis Master's thesis  
  Publisher University of Virginia Place of Publication Charlottesville Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1449  
Permanent link to this record
 

 
Author Le Tallec, T.; Théry, M.; Perret, M. url  doi
openurl 
  Title Melatonin concentrations and timing of seasonal reproduction in male mouse lemurs (Microcebus murinus) exposed to light pollution Type Journal Article
  Year 2016 Publication Journal of Mammalogy Abbreviated Journal J of Mammalogy  
  Volume 97 Issue 3 Pages 753-760  
  Keywords Animals; light pollution; photobiology; core temperature; locomotor activity; melatonin; Microcebus murinus; primate; testosterone; lemurs; mouse lemur  
  Abstract (up) Adverse effects of light at night are associated with human health problems and with changes in seasonal reproduction in several species. Owing to its role in the circadian timing system, melatonin production is suspected to mediate excess nocturnal light. To test this hypothesis, we examined the effect of light pollution on the timing of seasonal reproduction on a strict Malagasy long-day breeder, the nocturnal mouse lemur (Microcebus murinus). We randomly exposed 12 males in wintering sexual rest to moonlight or to a light-mimicking nocturnal streetlight for 5 weeks. We monitored urinary 6-sulfatoxymelatonin concentrations (aMT6s), plasma testosterone concentrations, and testis size, and we recorded daily rhythms of core temperature and locomotor activity. In males exposed to light pollution, we observed a significant decrease in urinary aMT6s concentrations associated with changes in daily rhythm profiles and with activation of reproductive function. These results showed that males entered spontaneous sexual recrudescence leading to a summer acclimatization state, which suggests that light at night disrupts perception of day length cues, leading to an inappropriate photoentrainment of seasonal rhythms.  
  Address UMR 7179 Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle , 1 avenue du petit château, 91800 Brunoy, France; thery(at)mnhn.fr  
  Corporate Author Thesis  
  Publisher Oxford University Press Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1348  
Permanent link to this record
 

 
Author Kocifaj, M.; Kómar, L. url  doi
openurl 
  Title A role of aerosol particles in forming urban skyglow and skyglow from distant cities Type Journal Article
  Year 2016 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS  
  Volume 458 Issue 1 Pages 438-448  
  Keywords Skyglow; scattering; atmospheric effects; artificial light; numerical modeling; GIS-based modeling; light pollution  
  Abstract (up) Aerosol particles may represent the largest uncertainty about skyglow change in many locations under clear sky conditions. This is because aerosols are ubiquitous in the atmosphere and influence the ground-reaching radiation in different ways depending on their concentrations, origins, shapes, sizes, and compositions. Large particles tend to scatter in Fraunhofer diffraction regime, while small particles can be treated in terms of Rayleigh formalism. However, the role of particle microphysics in forming the skyglow still remains poorly quantified. We have shown in this paper that the chemistry is somehow important for backscattering from large particles that otherwise work as efficient attenuators of light pollution if composed of absorbing materials. The contribution of large particles to the urban skyglow diminishes as they become more spherical in shape. The intensity of backscattering from non-absorbing particles is more-or-less linearly decreasing function of particle radius even if number size distribution is inversely proportional to the fourth power of particle radius. This is due to single particle backscattering that generally increases steeply as the particle radius approaches large values. Forward scattering depends on the particle shape but is independent of the material composition, thus allowing for a simplistic analytical model of skyglow from distant cities. The model we have developed is based on mean value theorem for integrals and incorporates the parametrizable Garstang's emission pattern, intensity decay along optical beam path, and near-forward scattering in an atmospheric environment. Such model can be used by modellers and experimentalists for rapid estimation of skyglow from distant light sources.  
  Address ICA, Slovak Academy of Sciences, Dúbravská Road 9, 845 03 Bratislava, Slovak Republic; kocifaj(at)savba.sk  
  Corporate Author Thesis  
  Publisher Oxford Journals Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1361  
Permanent link to this record
 

 
Author Warrant, E. url  doi
openurl 
  Title Superior vision in nocturnal insects inspires new night vision technologies Type Newspaper Article
  Year 2016 Publication SPIE Newsroom Abbreviated Journal SPIE Newsroom  
  Volume Issue Pages  
  Keywords Vision; Animals; Instrumentation  
  Abstract (up) Algorithms that dramatically improve the quality of video sequences captured in very dim light have been developed on the basis of the neural mechanisms in nocturnal insects with excellent visual capabilities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1818-2259 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @; GFZ @ kyba @ Serial 1418  
Permanent link to this record
 

 
Author Allik, T.; Ramboyong, L.; Roberts, M.; Walters, M.; Soyka, T.; Dixon, R.; Cho, J. url  doi
openurl 
  Title Enhanced oil spill detection sensors in low-light environments Type Conference Article
  Year 2016 Publication Proc. SPIE 9827, Ocean Sensing and Monitoring VIII, 98270B (May 17, 2016) Abbreviated Journal Proc. SPIE 9827  
  Volume Issue Pages  
  Keywords Instrumentation; Sensors; Cameras; Long wavelength infrared; Short wave infrared radiation; Spectroscopy; Calibration; Remote sensing; Water; Near infrared; Night vision  
  Abstract (up) Although advances have been made in oil spill remote detection, many electro-optic sensors do not provide real-time images, do not work well under degraded visual environments, nor provide a measure of extreme oil thickness in marine environments. A joint program now exists between BSEE and NVESD that addresses these capability gaps in remote sensing of oil spills. Laboratory experiments, calibration techniques, and field tests were performed at Fort Belvoir, Virginia; Santa Barbara, California; and the Ohmsett Test Facility in Leonardo, New Jersey. Weathered crude oils were studied spectroscopically and characterized with LWIR, and low-light-level visible/NIR, and SWIR cameras. We designed and fabricated an oil emulsion thickness calibration cell for spectroscopic analysis and ground truth, field measurements. Digital night vision cameras provided real-time, wide-dynamic-range imagery, and were able to detect and recognize oil from full sun to partial moon light. The LWIR camera provided quantitative oil analysis (identification) for >1 mm thick crude oils both day and night. Two filtered, co-registered, SWIR cameras were used to determine whether oil thickness could be measured in real time. Spectroscopic results revealed that oil emulsions vary with location and weathered state and some oils (e.g., ANS and Santa Barbara seeps) do not show the spectral rich features from archived Deep Water Horizon hyperspectral data. Multi-sensor imagery collected during the 2015 USCG Airborne Oil Spill Remote Sensing and Reporting Exercise and the design of a compact, multiband imager are discussed.  
  Address Active EO Inc.  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1475  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: