|   | 
Details
   web
Records
Author Hüppop, O.; Hüppop, K.; Dierschke, J.; Hill, R.
Title Bird collisions at an offshore platform in the North Sea Type Journal Article
Year 2016 Publication Bird Study Abbreviated Journal Bird Study
Volume 63 Issue 1 Pages 73-82
Keywords Animals; Ecology
Abstract (up) Capsule Collisions with offshore structures in the North Sea could account for the mortality of hundreds of thousands of nocturnally migrating birds.

Aims To assess, for the first time, the circumstances of mass fatalities at an offshore structure, including the species involved, their numbers, ages, body conditions and injuries.

Methods At an unmanned tall offshore research platform in the southeastern North Sea, bird corpses were collected on 160 visiting days from October 2003 to December 2007. Corpses were identified to species and kinds of injury, ages, and fat and muscle scores were determined. Nocturnal bird calls were recorded, identified to species and quantified. Local and large-scale weather parameters were also considered.

Results A total of 767 birds of 34 species, mainly thrushes, European Starlings and other passerines, were found at 45 visits. Most carcasses were in good body condition and young birds were not more affected than adults. Three quarters of 563 examined individuals had collision induced injuries. Birds in poor body condition were less likely to be collision victims than those in good condition. Mass collision events at the illuminated offshore structure coincided with increasingly adverse weather conditions and an increasing call intensity of nocturnal birds.

Conclusions Assuming an average of 150 dead birds per year at this single offshore structure and additionally assuming that a considerable proportion of the corpses were not found, we estimate that mortality at the 1000 + human structures in the North Sea could reach hundreds of thousands of birds. Since offshore industrialization will progress and collision numbers at offshore turbines will consequently increase considerably, we recommend reinforced measures to reduce bird strikes at offshore structures, especially in the light of substantial declines in some migrant species.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3657 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1377
Permanent link to this record
 

 
Author Ben-Attia, M.; Reinberg, A.; Smolensky, M.H.; Gadacha, W.; Khedaier, A.; Sani, M.; Touitou, Y.; Boughamni, N.G.
Title Blooming rhythms of cactus Cereus peruvianus with nocturnal peak at full moon during seasons of prolonged daytime photoperiod Type Journal Article
Year 2016 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume 33 Issue 4 Pages 419-430
Keywords Plants; Moonlight
Abstract (up) Cereus peruvianus (Peruvian apple cactus) is a large erect and thorny succulent cactus characterized by column-like (cereus [L]: column), that is, candle-shaped, appendages. For three successive years (1100 days), between early April and late November, we studied the flowering patterns of eight cacti growing in public gardens and rural areas of north and central Tunisia, far from nighttime artificial illumination, in relation to natural environmental light, temperature, relative humidity and precipitation parameters. Flower blooming was assessed nightly between 23:00 h and until at least 02:00 h, and additionally around-the-clock at ~1 h intervals for 30 consecutive days during the late summer of each year of study to quantify both nyctohemeral (day-night) and lunar patterns. During the summer months of prolonged daytime photoperiod, flower blooming of C. peruvianus exhibited predictable-in-time variation as “waves” with average period of 29.5 days synchronized by the light of the full moon. The large-sized flower (~16 cm diameter) opens almost exclusively at night, between sunset and sunrise, as a 24 h rhythm during a specific 3-4-day span of the lunar cycle (full moon), with a strong correlation between moon phase and number and proportion of flowers in bloom (ranging from r = +0.59 to +0.91). Black, blue and red cotton sheets were used to filter specific spectral bands of nighttime moonlight from illuminating randomly selected plant appendages as a means to test the hypothesis of a “gating” 24 h rhythm phenomenon of photoreceptors at the bud level. Relative to control conditions (no light filtering), black sheet covering inhibited flower bud induction by 87.5%, red sheet covering by 46.6% and blue sheet covering by 34%, and the respective inhibiting effects on number of flowers in bloom were essentially 100%, ~81% and ~44%. C. peruvianus is a unique example of a terrestrial plant that exhibits a circadian flowering rhythm (peak ~00:00 h) “gated” by 24 h, lunar 29.5-day (bright light of full moon) and annual 365.25-day (prolonged summertime day length) environmental photoperiod cycles.
Address e Departement des Sciences de la Vie, Faculte des Sciences de Bizerte , Universite de Carthage , Zarzouna , Tunisie
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:27030087 Approved no
Call Number LoNNe @ kyba @ Serial 1411
Permanent link to this record
 

 
Author Nickla, D.L.; Totonelly, K.
Title Brief light exposure at night disrupts the circadian rhythms in eye growth and choroidal thickness in chicks Type Journal Article
Year 2016 Publication Experimental eye Research Abbreviated Journal Exp Eye Res
Volume 146 Issue Pages 189-195
Keywords Animals
Abstract (up) Changes in ocular growth that lead to myopia or hyperopia are associated with alterations in the circadian rhythms in eye growth, choroidal thickness and intraocular pressure in animal models of emmetropization. Recent studies have shown that light at night has deleterious effects on human health, acting via “circadian disruptions” of various diurnal rhythms, including changes in phase or amplitude. The purpose of this study was to determine the effects of brief, 2-hour episodes of light in the middle of the night on the rhythms in axial length and choroidal thickness, and whether these alter eye growth and refractive error in the chick model of myopia. Starting at 2 weeks of age, birds received 2 hours of light between 12:00 am and 2:00 am for 7 days (n=12; total hours of light: 14 hrs). Age-matched controls had a continuous dark night (n=14; 14L/10D). Ocular dimensions were measured using high-frequency A-scan ultrasonography on the first day of the experiment, and again on day 7, at 6-hour intervals, starting at noon (12pm, 6pm, 12am, 6am, 12pm). Measurements during the night were done under a photographic safe-light. These data were used to determine rhythm parameters of phase and amplitude. 2 groups of birds, both experimental (light at night) and control, were measured with ultrasound at various intervals over the course of 4 weeks to determine growth rates. Refractive errors were measured in 6 experimental and 6 control birds at the end of 2 weeks. Eyes of birds in a normal L/D cycle showed sinusoidal 24-hour period diurnal rhythms in axial length and choroid thickness. Light in the middle of the night caused changes in both the rhythms in axial length and choroidal thickness, such that neither could be fit to a sine function having a period of 24 hours. Light caused an acute, transient stimulation in ocular growth rate in the subsequent 6-hour period (12 am to 6 am), that may be responsible for the increased growth rate seen 4 weeks later, and the more myopic refractive error. It also abolished the increase in choroidal thickness that normally occurs between 6 pm and 12 am. We conclude that light at night alters the rhythms in axial length and choroidal thickness in an animal model of eye growth, and that these circadian disruptions might lead to the development of ametropias. These results have implications for the use of light during the night in children.
Address The New England College of Optometry, Boston, MA, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0014-4835 ISBN Medium
Area Expedition Conference
Notes PMID:26970497 Approved no
Call Number LoNNe @ kyba @ Serial 1371
Permanent link to this record
 

 
Author Mendez, N.; Halabi, D.; Spichiger, C.; Salazar, E.R.; Vergara, K.; Alonso-Vasquez, P.; Carmona, P.; Sarmiento, J.M.; Richter, H.G.; Seron-Ferre, M.; Torres-Farfan, C.
Title Gestational Chronodisruption Impairs Circadian Physiology in Rat Male Offspring, Increasing the Risk of Chronic Disease Type Journal Article
Year 2016 Publication Endocrinology Abbreviated Journal Endocrinology
Volume 157 Issue 12 Pages 4654-4668
Keywords Animals
Abstract (up) Chronic exposure to light at night, as in shift work, alters biological clocks (chronodisruption), impacting negatively pregnancy outcome in human. Actually, the interaction of maternal and fetal circadian systems could be a key factor determining a fitting health in adult. We propose that chronic photoperiod shifts (CPS) during pregnancy, alter maternal circadian rhythms, and impair circadian physiology in the adult offspring, increasing health risks. Pregnant rats were exposed to normal photoperiod (12h-light/12h-dark) or to CSP until 85 gestation. The effects of gestational CPS were evaluated on the mother and adult offspring. In the mother we measured rhythms of heart-rate, body temperature and activity through gestation, and daily rhythms of plasma variables: melatonin, corticosterone, aldosterone and markers of renal function; at 18 days of gestation. In adult offspring, we measured rhythms of clock gene expression in the suprachiasmatic nucleus (SCN), locomotor activity, body temperature, heart rate, blood pressure, plasma variables, glucose tolerance and corticosterone response to adrenocorticotropic hormone (ACTH). CPS altered all maternal circadian rhythms; lengthened gestation and increased newborn weight. The adult CPS offspring presented normal rhythms of clock gene expression in the SCN, locomotor activity and body temperature. However, the daily rhythm of plasma melatonin was absent, and corticosterone, aldosterone, renal markers, blood pressure and heart-rate rhythms were altered. Moreover, CPS offspring presented decreased glucose tolerance and abnormal corticosterone response to ACTH. Altogether, these data shows that gestational CPS induced long-term effects on the offspring circadian system, wherein a normal SCN coexists with altered endocrine, cardiovascular and metabolic function.
Address Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology and Pathology and
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-7227 ISBN Medium
Area Expedition Conference
Notes PMID:27802074 Approved no
Call Number LoNNe @ kyba @ Serial 1550
Permanent link to this record
 

 
Author Papagiannakopoulos, T.; Bauer, M.R.; Davidson, S.M.; Heimann, M.; Subbaraj, L.; Bhutkar, A.; Bartlebaugh, J.; Vander Heiden, M.G.; Jacks, T.
Title Circadian Rhythm Disruption Promotes Lung Tumorigenesis Type Journal Article
Year 2016 Publication Cell Metabolism Abbreviated Journal Cell Metab
Volume 24 Issue 2 Pages 324–331
Keywords Animals
Abstract (up) Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression.
Address David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Electronic address: tjacks@mit.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-4131 ISBN Medium
Area Expedition Conference
Notes PMID:27476975 Approved no
Call Number LoNNe @ kyba @ Serial 1497
Permanent link to this record