toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bolton, D.; Mayer-Pinto, M.; Clark, G.F.; Dafforn, K.A.; Brassil, W.A.; Becker, A.; Johnston, E.L. url  doi
openurl 
  Title Coastal urban lighting has ecological consequences for multiple trophic levels under the sea Type Journal Article
  Year 2016 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ  
  Volume 576 Issue Pages 1-9  
  Keywords Animals; Ecology  
  Abstract Urban land and seascapes are increasingly exposed to artificial lighting at night (ALAN), which is a significant source of light pollution. A broad range of ecological effects are associated with ALAN, but the changes to ecological processes remain largely unstudied. Predation is a key ecological process that structures assemblages and responds to natural cycles of light and dark. We investigated the effect of ALAN on fish predatory behaviour, and sessile invertebrate prey assemblages. Over 21days fish and sessile assemblages were exposed to 3 light treatments (Day, Night and ALAN). An array of LED spotlights was installed under a wharf to create the ALAN treatments. We used GoPro cameras to film during the day and ALAN treatments, and a Dual frequency IDentification SONar (DIDSON) to film during the night treatments. Fish were most abundant during unlit nights, but were also relatively sedentary. Predatory behaviour was greatest during the day and under ALAN than at night, suggesting that fish are using structures for non-feeding purposes (e.g. shelter) at night, but artificial light dramatically increases their predatory behaviour. Altered predator behaviour corresponded with structural changes to sessile prey assemblages among the experimental lighting treatments. We demonstrate the direct effects of artificial lighting on fish behaviour and the concomitant indirect effects on sessile assemblage structure. Current and future projected use of artificial lights has the potential to significantly affect predator-prey interactions in marine systems by altering habitat use for both predators and prey. However, developments in lighting technology are a promising avenue for mitigation. This is among the first empirical evidence from the marine system on how ALAN can directly alter predation, a fundamental ecosystem process, and have indirect trophic consequences.  
  Address (down) Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia; Sydney Institute of Marine Sciences, Mosman, NSW 2088, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27780095 Approved no  
  Call Number LoNNe @ kyba @ Serial 1548  
Permanent link to this record
 

 
Author Costin, K.J.; Boulton, A.M. url  doi
openurl 
  Title A Field Experiment on the Effect of Introduced Light Pollution on Fireflies (Coleoptera: Lampyridae) in the Piedmont Region of Maryland Type Journal Article
  Year 2016 Publication The Coleopterists Bulletin Abbreviated Journal The Coleopterists Bulletin  
  Volume 70 Issue 1 Pages 84-86  
  Keywords Animals; insects; fireflies; Coleoptera; Lampyridae; Coleoptera Lampyridae; artificial light at night; ecology; light pollution  
  Abstract (none)  
  Address (down) Environmental Biology Hood College 401 Rosemont Avenue Frederick, MD 21701, U.S.A.; kjc(at)hood.edu  
  Corporate Author Thesis  
  Publisher BioOne Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-065X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1406  
Permanent link to this record
 

 
Author Bennie, J.; Davies, T.W.; Cruse, D.; Gaston, K.J. url  doi
openurl 
  Title Ecological effects of artificial light at night on wild plants Type Journal Article
  Year 2016 Publication Journal of Ecology Abbreviated Journal J Ecol  
  Volume 104 Issue 3 Pages 611-620  
  Keywords Plants; wild plants; photobiology; Circadian; Ecophysiology; light cycles; light pollution; photoperiodism; photopollution; physiology; sky glow; urban ecology  
  Abstract 1.Plants use light as a source of both energy and information. Plant physiological responses to light, and interactions between plants and animals (such as herbivory and pollination), have evolved under a more or less stable regime of 24-hour cycles of light and darkness, and, outside of the tropics, seasonal variation in daylength.

2.The rapid spread of outdoor electric lighting across the globe over the past century has caused an unprecedented disruption to these natural light cycles. Artificial light is widespread in the environment, varying in intensity by several orders of magnitude from faint skyglow reflected from distant cities to direct illumination of urban and suburban vegetation.

3.In many cases artificial light in the nighttime environment is sufficiently bright to induce a physiological response in plants, affecting their phenology, growth form and resource allocation. The physiology, behaviour and ecology of herbivores and pollinators is also likely to be impacted by artificial light. Thus, understanding the ecological consequences of artificial light at night is critical to determine the full impact of human activity on ecosystems.

4.Synthesis. Understanding the impacts of artificial nighttime light on wild plants and natural vegetation requires linking the knowledge gained from over a century of experimental research on the impacts of light on plants in the laboratory and greenhouse with knowledge of the intensity, spatial distribution, spectral composition and timing of light in the nighttime environment. To understand fully the extent of these impacts requires conceptual models that can (i) characterise the highly heterogeneous nature of the nighttime light environment at a scale relevant to plant physiology, and (ii) scale physiological responses to predict impacts at the level of the whole plant, population, community and ecosystem.
 
  Address (down) Environment and Sustainability Institute, University of Exeter, Penryn, United Kimgdom; j.j.bennie(at)exeter.ac.uk  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0477 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1350  
Permanent link to this record
 

 
Author Koo, Y.S.; Song, J.-Y.; Joo, E.-Y.; Lee, H.-J.; Lee, E.; Lee, S.-K.; Jung, K.-Y. url  doi
openurl 
  Title Outdoor artificial light at night, obesity, and sleep health: Cross-sectional analysis in the KoGES study Type Journal Article
  Year 2016 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 33 Issue 3 Pages 301-314  
  Keywords Human Health; Obesity  
  Abstract Obesity is a common disorder with many complications. Although chronodisruption plays a role in obesity, few epidemiological studies have investigated the association between artificial light at night (ALAN) and obesity. Since sleep health is related to both obesity and ALAN, we investigated the association between outdoor ALAN and obesity after adjusting for sleep health. We also investigated the association between outdoor ALAN and sleep health. This cross-sectional survey included 8526 adults, 39-70 years of age, who participated in the Korean Genome and Epidemiology Study. Outdoor ALAN data were obtained from satellite images provided by the US Defense Meteorological Satellite Program. We obtained individual data regarding outdoor ALAN; body mass index; depression; and sleep health including sleep duration, mid-sleep time, and insomnia; and other demographic data including age, sex, educational level, type of residential building, monthly household income, alcohol consumption, smoking status and consumption of caffeine or alcohol before sleep. A logistic regression model was used to investigate the association between outdoor ALAN and obesity. The prevalence of obesity differed significantly according to sex (women 47% versus men 39%, p < 0.001) and outdoor ALAN (high 55% versus low 40%, p < 0.001). Univariate logistic regression analysis revealed a significant association between high outdoor ALAN and obesity (odds ratio [OR] 1.24, 95% confidence interval [CI] 1.14-1.35, p < 0.001). Furthermore, multivariate logistic regression analyses showed that high outdoor ALAN was significantly associated with obesity after adjusting for age and sex (OR 1.25, 95% CI 1.14-1.37, p < 0.001) and even after controlling for various other confounding factors including age, sex, educational level, type of residential building, monthly household income, alcohol consumption, smoking, consumption of caffeine or alcohol before sleep, delayed sleep pattern, short sleep duration and habitual snoring (OR 1.20, 95% CI 1.06-1.36, p = 0.003). The findings of our study provide epidemiological evidence that outdoor ALAN is significantly related to obesity.  
  Address (down) e Department of Neurology , Seoul National University College of Medicine , Seoul , South Korea  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26950542 Approved no  
  Call Number LoNNe @ kyba @ Serial 1370  
Permanent link to this record
 

 
Author Ben-Attia, M.; Reinberg, A.; Smolensky, M.H.; Gadacha, W.; Khedaier, A.; Sani, M.; Touitou, Y.; Boughamni, N.G. url  doi
openurl 
  Title Blooming rhythms of cactus Cereus peruvianus with nocturnal peak at full moon during seasons of prolonged daytime photoperiod Type Journal Article
  Year 2016 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 33 Issue 4 Pages 419-430  
  Keywords Plants; Moonlight  
  Abstract Cereus peruvianus (Peruvian apple cactus) is a large erect and thorny succulent cactus characterized by column-like (cereus [L]: column), that is, candle-shaped, appendages. For three successive years (1100 days), between early April and late November, we studied the flowering patterns of eight cacti growing in public gardens and rural areas of north and central Tunisia, far from nighttime artificial illumination, in relation to natural environmental light, temperature, relative humidity and precipitation parameters. Flower blooming was assessed nightly between 23:00 h and until at least 02:00 h, and additionally around-the-clock at ~1 h intervals for 30 consecutive days during the late summer of each year of study to quantify both nyctohemeral (day-night) and lunar patterns. During the summer months of prolonged daytime photoperiod, flower blooming of C. peruvianus exhibited predictable-in-time variation as “waves” with average period of 29.5 days synchronized by the light of the full moon. The large-sized flower (~16 cm diameter) opens almost exclusively at night, between sunset and sunrise, as a 24 h rhythm during a specific 3-4-day span of the lunar cycle (full moon), with a strong correlation between moon phase and number and proportion of flowers in bloom (ranging from r = +0.59 to +0.91). Black, blue and red cotton sheets were used to filter specific spectral bands of nighttime moonlight from illuminating randomly selected plant appendages as a means to test the hypothesis of a “gating” 24 h rhythm phenomenon of photoreceptors at the bud level. Relative to control conditions (no light filtering), black sheet covering inhibited flower bud induction by 87.5%, red sheet covering by 46.6% and blue sheet covering by 34%, and the respective inhibiting effects on number of flowers in bloom were essentially 100%, ~81% and ~44%. C. peruvianus is a unique example of a terrestrial plant that exhibits a circadian flowering rhythm (peak ~00:00 h) “gated” by 24 h, lunar 29.5-day (bright light of full moon) and annual 365.25-day (prolonged summertime day length) environmental photoperiod cycles.  
  Address (down) e Departement des Sciences de la Vie, Faculte des Sciences de Bizerte , Universite de Carthage , Zarzouna , Tunisie  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27030087 Approved no  
  Call Number LoNNe @ kyba @ Serial 1411  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: