toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kocifaj, M.; Solano Lamphar, H.A. url  doi
openurl 
  Title Angular Emission Function of a City and Skyglow Modeling: A Critical Perspective Type Journal Article
  Year 2016 Publication Publications of the Astronomical Society of the Pacific Abbreviated Journal Pasp  
  Volume 128 Issue 970 Pages 124001  
  Keywords Skyglow  
  Abstract The radiative transfer equation (RTE) is a common approach to solving the transfer of electromagnetic energy in heterogeneous disperse media, such as atmospheric environment. One-dimensional RTE is a linear boundary value problem that is well suited to plane-parallel atmosphere with no diffuse intensity entering the top of the atmosphere. In nighttime regime, the ground-based light sources illuminate the atmosphere at its bottom interface. However, the light-pollution models conventionally use radiant intensity function rather than radiance. This might potentially result in a number of misconceptions. We focused on similarities and fundamental differences between both functions and clarified distinct consequences for the modeling of skyglow from finite-sized and semi-infinite light-emitting flat surfaces. Minimum requirements to be fulfilled by a City Emission Function (CEF) are formulated to ensure a successful solution of standard and inverse problems. It has been shown that the horizon radiance of a flat surface emitting in accordance with Garstang's function (GEF) would exceed any limit, meaning that the GEF is not an appropriate tool to model skyglow from distant sources. We developed two alternative CEFs to remedy this problem through correction of direct upward emissions; the most important strengths of the modified CEFs are detailed in this paper. Numerical experiments on sky luminance under well-posed and ill-posed boundary conditions were made for two extreme uplight fractions (F) and for three discrete distances from the city edge. The errors induced by replacing radiance with radiant intensity function in the RTE are generally low (15%–30%) if F is as large as 0.15, but alteration of the luminance may range over 1–3 orders of magnitude if F approaches zero. In the latter case, the error margin can increase by a factor of 10–100 or even 1000, even if the angular structure of luminance patterns suffers only weak changes. This is why such a shift in luminance magnitudes can be mistakenly interpreted as the effect of inaccurate estimate of lumens per head of the population rather than the effect of cosine distortion due to ill-posed inputs to the RTE. For that reason, a thorough revision (and/or remediation) of theoretical and computational models is suggested.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6280 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1564  
Permanent link to this record
 

 
Author Lin, C.-F.; Tsai, T.-Y.; Chen, K.-Y.; Shen, P.-C. url  doi
openurl 
  Title Efficient warm-white lighting using rare-earth-element-free fluorescent materials for saving energy, environment protection and human health Type Journal Article
  Year 2016 Publication RSC Adv. Abbreviated Journal RSC Adv.  
  Volume 6 Issue 113 Pages 111959-111965  
  Keywords Lighting  
  Abstract Solid-state white light emission is important for energy saving, but currently it is mainly based on environmentally unfriendly rare-earth doped phosphors or cadmium-containing quantum dots. Here, we explore an environmentally friendly approach for efficient white light emission based on ZnSe:Mn nanoparticles without rare-earth or cadmium elements. The emission is composed of a broad green-orange spectral band (525–650 nm) with the peak located at 578 nm and the color temperature is low, so it is particularly good for lighting at night to reduce risks to human health. Furthermore, the optimal absorption peak could be designed at 453 nm, which well matches the commercial blue-LED emission wavelength (445–470 nm). A quantum yield up to 84.5% could also be achieved. This rare-earth-element-free material opens up a new avenue for energy-saving, healthy, and environmentally benign lighting.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1566  
Permanent link to this record
 

 
Author Grunsven van, Roy H.A.; Creemers, Raymond; Joosten, Kris; Donners Maurice; Veenendaal, Elmar M. url  doi
openurl 
  Title Behaviour of migrating toads under artificial lights differs from other phases of their life cycle Type Journal Article
  Year 2016 Publication Amphibia-Reptilia Abbreviated Journal AMRE  
  Volume Issue Pages  
  Keywords animal, amphibia, Anura, fragmentation, light pollution, mitigation, phototaxis, spectra  
  Abstract  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 1568  
Permanent link to this record
 

 
Author Schroer, S.; Hölker F.; Corcho, O. url  openurl
  Title The impact of citizen science on research about artificial light at night Type Journal Article
  Year 2016 Publication Environmental Scientist Abbreviated Journal  
  Volume 25 Issue 2 Pages 18-24  
  Keywords citizen science; light pollution research  
  Abstract  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 1571  
Permanent link to this record
 

 
Author Schroer, S.; Felsmann, K.; Hölker, F.; Mummert, S.; Monaghan, M.T.; Wurzbacher, C.; Premke, K. url  openurl
  Title The impact of outdoor lighting on ecosystem function – gaining information with a Citizen Science approach using a questionnaire Type Conference Article
  Year 2016 Publication Austrian Citizen Science Conference Abbreviated Journal  
  Volume Issue Pages 8-13  
  Keywords citizen science; mapping  
  Abstract  
  Address (up)  
  Corporate Author Thesis  
  Publisher Frontiers Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 1572  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: