|   | 
Details
   web
Records
Author (up) Bennie, J.; Davies, T.W.; Cruse, D.; Gaston, K.J.
Title Ecological effects of artificial light at night on wild plants Type Journal Article
Year 2016 Publication Journal of Ecology Abbreviated Journal J Ecol
Volume 104 Issue 3 Pages 611-620
Keywords Plants; wild plants; photobiology; Circadian; Ecophysiology; light cycles; light pollution; photoperiodism; photopollution; physiology; sky glow; urban ecology
Abstract 1.Plants use light as a source of both energy and information. Plant physiological responses to light, and interactions between plants and animals (such as herbivory and pollination), have evolved under a more or less stable regime of 24-hour cycles of light and darkness, and, outside of the tropics, seasonal variation in daylength.

2.The rapid spread of outdoor electric lighting across the globe over the past century has caused an unprecedented disruption to these natural light cycles. Artificial light is widespread in the environment, varying in intensity by several orders of magnitude from faint skyglow reflected from distant cities to direct illumination of urban and suburban vegetation.

3.In many cases artificial light in the nighttime environment is sufficiently bright to induce a physiological response in plants, affecting their phenology, growth form and resource allocation. The physiology, behaviour and ecology of herbivores and pollinators is also likely to be impacted by artificial light. Thus, understanding the ecological consequences of artificial light at night is critical to determine the full impact of human activity on ecosystems.

4.Synthesis. Understanding the impacts of artificial nighttime light on wild plants and natural vegetation requires linking the knowledge gained from over a century of experimental research on the impacts of light on plants in the laboratory and greenhouse with knowledge of the intensity, spatial distribution, spectral composition and timing of light in the nighttime environment. To understand fully the extent of these impacts requires conceptual models that can (i) characterise the highly heterogeneous nature of the nighttime light environment at a scale relevant to plant physiology, and (ii) scale physiological responses to predict impacts at the level of the whole plant, population, community and ecosystem.
Address Environment and Sustainability Institute, University of Exeter, Penryn, United Kimgdom; j.j.bennie(at)exeter.ac.uk
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0477 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1350
Permanent link to this record
 

 
Author (up) Bergs, R.
Title Exploring the Spatial Economy by Night Type Report
Year 2016 Publication n/a Abbreviated Journal n/a
Volume n/a Issue n/a Pages n/a
Keywords Economics; DMSP; DMSP-OLS; remote sensing; spatial distribution
Abstract Night satellite images may offer an interesting tool to generate socio-economically relevant data and to analyse the evolution of space, e.g. cities or rural areas, and how spatial units interact over time. This paper is just an essay with preliminary ideas for discussion; the approach is explorative-methodological rather than one putting an empirical focus on a defined research item. Empirics discussed in this paper are just various examples collected from tinkering.

The DMSP-OLS images and adequate image analysis software such as ImageJ (in some cases to be complemented by further statistics software) provide a useful perspective for the analysis of spatial change. Since there is a stable and significant correlation between social and economic variables (population density, GDP PPP) and luminosity, such image analyses contain important information on spatial economic development. Analysis of night imagery is certainly not adequate to replace the statistical analysis of regional data, but it is a good tool to confirm and illustrate patterns of spatial heterogeneity and spatial dependence over time.
Address PRAC – Bergs & Issa Partnership Co., Bad Soden, Germany
Corporate Author Thesis
Publisher n/a Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Planung & Forschung Spolicy Research & Consultancy Discussion Paper Series Abbreviated Series Title
Series Volume Series Issue Edition
ISSN n/a ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1392
Permanent link to this record
 

 
Author (up) Blair, A.
Title Sark in the Dark: Wellbeing and Community on the Dark Sky Island of Sark Type Book Whole
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords Society; ecopsychology; environmental psychology; psychology
Abstract Studies of the beneficial and transformative qualities of encounters with nature typically focus on ‘green’ or grounded nature. In 'Sark in the Dark', Ada Blair shifts this focus upwards to a refreshing encounter with the richness of the dark night sky. In this book, she documents the research she conducted while at the University of Wales Trinity Saint David into the culture and history of the world’s first designated Dark Sky Island. Through a series of interviews with Sark residents, as well as poignant self-reflections, Blair explores the importance of the dark sky on human wellbeing and community.
Address caladach(at)gmail.com
Corporate Author Thesis
Publisher Sophia Centre Press Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Sophia Centre Master Monographs Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-907767-42-5 Medium Print
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1780
Permanent link to this record
 

 
Author (up) Bliss-Ketchum, L.L.; de Rivera, C.E.; Turner, B.C.; Weisbaum, D.M.
Title The effect of artificial light on wildlife use of a passage structure Type Journal Article
Year 2016 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume 199 Issue Pages 25-28
Keywords Animals; animal movement; Columbia black-tailed deer; deer; Odocoileus hemionus columbianus; deer mouse; Peromyscus maniculatus; opossum; Didelphis virginiana; artificial light at night
Abstract Barriers to animal movement can isolate populations, impacting their genetic diversity, susceptibility to disease, and access to resources. Barriers to movement may be caused by artificial light, which is known to disrupt bird, sea turtle, and bat behavior, but few studies have experimentally investigated the effects of artificial light on movement for a suite of terrestrial vertebrates. Therefore, we studied the effect of ecological light pollution on animal usage of a bridge under-road passage structure. On a weekly basis, sections of the structure were subjected to different light treatments including no light added, followed by a Reference period when lights were off in all the structure sections. Sand track data revealed use by 23 mammals, birds, reptiles and amphibians, nine of which had > 30 tracks for species-level analysis. Columbia black-tailed deer (Odocoileus hemionus columbianus) traversed under unlit bridge sections much less when neighboring sections were lit compared to when none were, suggesting avoidance due to any nearby presence of artificial light. Similarly, deer mouse (Peromyscus maniculatus) and opossum (Didelphis virginiana) track paths were less frequent in the lit sections than the ambient. Crossing was correlated with temporal or spatial factors but not light for three of the other species. These findings suggest that artificial light may be reducing habitat connectivity for some species though not providing a strong barrier for others. Such information is needed to inform mitigation of habitat fragmentation in the face of expanding urbanization.
Address Department of Environmental Science & Management, Portland State University, PO Box 751, Portland, OR 97207, USA; blissket(at)pdx.edu
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1445
Permanent link to this record
 

 
Author (up) Bolton, D.; Mayer-Pinto, M.; Clark, G.F.; Dafforn, K.A.; Brassil, W.A.; Becker, A.; Johnston, E.L.
Title Coastal urban lighting has ecological consequences for multiple trophic levels under the sea Type Journal Article
Year 2016 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ
Volume 576 Issue Pages 1-9
Keywords Animals; Ecology
Abstract Urban land and seascapes are increasingly exposed to artificial lighting at night (ALAN), which is a significant source of light pollution. A broad range of ecological effects are associated with ALAN, but the changes to ecological processes remain largely unstudied. Predation is a key ecological process that structures assemblages and responds to natural cycles of light and dark. We investigated the effect of ALAN on fish predatory behaviour, and sessile invertebrate prey assemblages. Over 21days fish and sessile assemblages were exposed to 3 light treatments (Day, Night and ALAN). An array of LED spotlights was installed under a wharf to create the ALAN treatments. We used GoPro cameras to film during the day and ALAN treatments, and a Dual frequency IDentification SONar (DIDSON) to film during the night treatments. Fish were most abundant during unlit nights, but were also relatively sedentary. Predatory behaviour was greatest during the day and under ALAN than at night, suggesting that fish are using structures for non-feeding purposes (e.g. shelter) at night, but artificial light dramatically increases their predatory behaviour. Altered predator behaviour corresponded with structural changes to sessile prey assemblages among the experimental lighting treatments. We demonstrate the direct effects of artificial lighting on fish behaviour and the concomitant indirect effects on sessile assemblage structure. Current and future projected use of artificial lights has the potential to significantly affect predator-prey interactions in marine systems by altering habitat use for both predators and prey. However, developments in lighting technology are a promising avenue for mitigation. This is among the first empirical evidence from the marine system on how ALAN can directly alter predation, a fundamental ecosystem process, and have indirect trophic consequences.
Address Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia; Sydney Institute of Marine Sciences, Mosman, NSW 2088, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes PMID:27780095 Approved no
Call Number LoNNe @ kyba @ Serial 1548
Permanent link to this record