toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yang, Y.-F.; Jiang, J.-S.; Pan, J.-M.; Ying, Y.-B.; Wang, X.-S.; Zhang, M.-L.; Lu, M.-S.; Chen, X.-H. url  doi
openurl 
  Title The relationship of spectral sensitivity with growth and reproductive response in avian breeders (Gallus gallus) Type Journal Article
  Year 2016 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 6 Issue Pages 19291  
  Keywords Animals; birds; Gallus gallus; spectrum; *Reproduction; photobiology; biology  
  Abstract A previous study demonstrated that birds that are exposed to light at night develop advanced reproductive systems. However, spectrum might also affect the photoperiodic response of birds. The present study was aimed to investigate the effects of spectral composition on the growth and reproductive physiology of female breeders, using pure light-emitting diode spectra. A total of 1,000 newly hatched female avian breeders (Gallus gallus) were equally allocated to white-, red-, yellow-, green- and blue-light treated groups. We found that blue-light treated birds had a greater and faster weight gain than did red- and yellow-light treated birds (P = 0.02 and 0.05). The red light expedited the sexual maturation of the chicks, whose age at sexual maturity was 7 and 14 days earlier than that of the green- and blue-light treated birds, respectively. The accumulative egg production of the red-light treated birds was 9 and 8 eggs more than that of the blue- and green-light treated birds. The peak lay rate of the red-light treated groups was significantly greater than the blue-light treated birds (P = 0.028). In conclusion, exposure to short-wavelength light appears to promote growth of female breeder birds, whereas exposure to long-wavelength light appears to accelerate reproductive performance.  
  Address Zhejiang Guangda Breeding Poultry Corporation, Jiaxing 314423, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26765747 Approved no  
  Call Number (up) IDA @ john @ Serial 1338  
Permanent link to this record
 

 
Author Gao, X.; Li, X.; Zhang, M.; Chi, L.; Song, C.; Liu, Y. url  doi
openurl 
  Title Effects of LED light quality on the growth, survival and metamorphosis ofHaliotis discus hannaiIno larvae Type Journal Article
  Year 2016 Publication Aquaculture Research Abbreviated Journal Aquac Res  
  Volume 47 Issue 12 Pages 3705–3717  
  Keywords Animals; Haliotis discus hannai Ino; larva; LED light quality; initial stage of lighting; embryonic development; abalone; photobiology  
  Abstract Light is a key environmental factor influencing the growth, development and survival of aquatic organisms. We examined the effects of different light qualities (red, orange, white, blue, green or no light) and developmental stage at initial lighting [fertilized egg (FE), trochophore larva (TL), or eye-spot larva (EL)] on the growth, development, and survival of larvae of the Pacific abalone Haliotis discus hannai Ino. Larva-hatching success was significantly higher under blue, green, or no light compared with red, orange or white light (P < 0.05). Larval abnormalities were significantly increased under red, orange or white light compared with all other light qualities (P < 0.05). The incidence of metamorphosis in larvae illuminated from the TL stage was significantly higher under blue compared with other light qualities. Irrespective of the stage at initial illumination, the incidence of metamorphosis was lower in larvae cultured under red, orange or no light compared with other light qualities, but the differences were not significant (P > 0.05). Juvenile survival was significantly higher under blue or green compared with other light qualities (P < 0.05), with no significant effect of stage at initial illumination (P > 0.05). Larval size at completion of the shell was unaffected by stage at initial illumination, but was greater under blue or green light, while size at metamorphosis was greatest following illumination with blue or green light since the TL or EL stage (P < 0.05). Metamorphosis time was shortest with blue or green light and in cultures illuminated from the FE or TL stage (P < 0.05). Larval development from the FE to formation of the fourth tubule on the cephalic tentacles was fastest in larvae exposed since the FE or TL stage to blue or green light, compared with other light qualities (P < 0.05). However, there was no difference in terms of the rate of development from the FE to the TL stage between cultures lit or unlit since the FE egg stage (P > 0.05). These results suggest that a blue or green light source applied from the TL stage can increase the hatching and yield of H. discus hannai Ino, with important implications for the development of the aquaculture industry.  
  Address Research and Development Center of Marine Biotechnology, Institute of Oceanology, Chinese Academy of Science, 7 Nanhai Road, Qingdao 266071, Shandong Province, China; 18354292961(at)163.com.  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1355557X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) IDA @ john @ Serial 1340  
Permanent link to this record
 

 
Author Rodríguez Martín, A.; Chiaradia, A.; Wasiak, P.; Renwick, L.; Dann, P. url  doi
openurl 
  Title Waddling on the Dark Side: Ambient Light Affects Attendance Behavior of Little Penguins Type Journal Article
  Year 2016 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume 0748730415626010 Issue Pages  
  Keywords Animals; birds; penguins; attendance; little penguin; Eudyptula minor; Phillip Island; Australia; photobiology; seabirds  
  Abstract Visible light on Earth largely comes from the sun, including light reflected from the moon. Predation risk is strongly determined by light conditions, and some animals are nocturnal to reduce predation. Artificial lights and its consequent light pollution may disrupt this natural behavior. Here, we used 13 years of attendance data to study the effects of sun, moon, and artificial light on the attendance pattern of a nocturnal seabird, the little penguin Eudyptula minor at Phillip Island, Australia. The little penguin is the smallest and the only penguin species whose activity on land is strictly nocturnal. Automated monitoring systems recorded individually marked penguins every time they arrived (after sunset) at or departed (before sunrise) from 2 colonies under different lighting conditions: natural night skylight and artificial lights (around 3 lux) used to enhance penguin viewing for ecotourism around sunset. Sunlight had a strong effect on attendance as penguins arrived on average around 81 min after sunset and departed around 92 min before sunrise. The effect of moonlight was also strong, varying according to moon phase. Fewer penguins came ashore during full moon nights. Moon phase effect was stronger on departure than arrival times. Thus, during nights between full moon and last quarter, arrival times (after sunset) were delayed, even though moonlight levels were low, while departure times (before sunrise) were earlier, coinciding with high moonlight levels. Cyclic patterns of moon effect were slightly out of phase but significantly between 2 colonies, which could be due to site-specific differences or presence/absence of artificial lights. Moonlight could be overridden by artificial light at our artificially lit colony, but the similar amplitude of attendance patterns between colonies suggests that artificial light did not mask the moonlight effect. Further research is indeed necessary to understand how seabirds respond to the increasing artificial night light levels.  
  Address Department of Evolutionary Ecology, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio s/n, 41092 Seville, Spain; airamrguez(at)ebd.csic.es  
  Corporate Author Thesis  
  Publisher SAGE Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) IDA @ john @ Serial 1345  
Permanent link to this record
 

 
Author Weishampel, Z.A.; Cheng, W.-H.; Weishampel, J.F. url  doi
openurl 
  Title Sea turtle nesting patterns in Florida vis-à-vis satellite-derived measures of artificial lighting Type Journal Article
  Year 2016 Publication Remote Sensing in Ecology and Conservation Abbreviated Journal Remote Sens Ecol Conserv  
  Volume 2 Issue 1 Pages 59-72  
  Keywords Animals; sea turtles; Artificial light; DMSP; light pollution; marine turtles; nest surveys; simultaneous autoregressive modeling; Florida; United States; Loggerhead turtle; Caretta caretta; Leatherback turtle; Dermochelys coriacea; Green turtle; Chelonia mydas  
  Abstract Light pollution contributes to the degradation and reduction of habitat for wildlife. Nocturnally nesting and hatching sea turtle species are particularly sensitive to artificial light near nesting beaches. At local scales (0.01–0.1 km), artificial light has been experimentally shown to deter nesting females and disorient hatchlings. This study used satellite-based remote sensing to assess broad scale (~1–100s km) effects of artificial light on nesting patterns of loggerhead (Caretta caretta), leatherback (Dermochelys coriacea) and green turtles (Chelonia mydas) along the Florida coastline. Annual artificial nightlight data from 1992 to 2012 acquired by the Defense Meteorological Satellite Program (DMSP) were compared to an extensive nesting dataset for 368, ~1 km beach segments from this same 21-year period. Relationships between nest densities and artificial lighting were derived using simultaneous autoregressive models to adjust for the presence of spatial autocorrelation. Though coastal urbanization increased in Florida during this period, nearly two-thirds of the surveyed beaches exhibited decreasing light levels (N = 249); only a small fraction of the beaches showed significant increases (N = 52). Nest densities for all three sea turtle species were negatively influenced by artificial light at neighborhood scales (<100 km); however, only loggerhead and green turtle nest densities were influenced by artificial light levels at the individual beach scale (~1 km). Satellite monitoring shows promise for light management of extensive or remote areas. As the spectral, spatial, and temporal resolutions of the satellite data are coarse, ground measurements are suggested to confirm that artificial light levels on beaches during the nesting season correspond to the annual nightlight measures.  
  Address Department of Biology, University of Central Florida, Orlando, FL 32816 USA; John.Weishampel(at)ucf.edu  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2056-3485 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) IDA @ john @ Serial 1346  
Permanent link to this record
 

 
Author Le Tallec, T.; Théry, M.; Perret, M. url  doi
openurl 
  Title Melatonin concentrations and timing of seasonal reproduction in male mouse lemurs (Microcebus murinus) exposed to light pollution Type Journal Article
  Year 2016 Publication Journal of Mammalogy Abbreviated Journal J of Mammalogy  
  Volume 97 Issue 3 Pages 753-760  
  Keywords Animals; light pollution; photobiology; core temperature; locomotor activity; melatonin; Microcebus murinus; primate; testosterone; lemurs; mouse lemur  
  Abstract Adverse effects of light at night are associated with human health problems and with changes in seasonal reproduction in several species. Owing to its role in the circadian timing system, melatonin production is suspected to mediate excess nocturnal light. To test this hypothesis, we examined the effect of light pollution on the timing of seasonal reproduction on a strict Malagasy long-day breeder, the nocturnal mouse lemur (Microcebus murinus). We randomly exposed 12 males in wintering sexual rest to moonlight or to a light-mimicking nocturnal streetlight for 5 weeks. We monitored urinary 6-sulfatoxymelatonin concentrations (aMT6s), plasma testosterone concentrations, and testis size, and we recorded daily rhythms of core temperature and locomotor activity. In males exposed to light pollution, we observed a significant decrease in urinary aMT6s concentrations associated with changes in daily rhythm profiles and with activation of reproductive function. These results showed that males entered spontaneous sexual recrudescence leading to a summer acclimatization state, which suggests that light at night disrupts perception of day length cues, leading to an inappropriate photoentrainment of seasonal rhythms.  
  Address UMR 7179 Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle , 1 avenue du petit château, 91800 Brunoy, France; thery(at)mnhn.fr  
  Corporate Author Thesis  
  Publisher Oxford University Press Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) IDA @ john @ Serial 1348  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: