|   | 
Details
   web
Records
Author Degen, T.; Mitesser, O.; Perkin, E.K.; Weiss, N.-S.; Oehlert, M.; Mattig, E.; Hölker, F.
Title Street lighting: sex-independent impacts on moth movement Type Journal Article
Year 2016 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol
Volume Issue Pages
Keywords Biology
Abstract 1.Artificial lights have become an integral and welcome part of our urban and peri-urban environments. However, recent research has highlighted the potentially negative ecological consequences of ubiquitous artificial light. In particular, insects, especially moths, are expected to be negatively impacted by the presence of artificial lights. Previous research with light traps has shown a male-biased attraction to light in moths. 2.In this study, we sought to determine if street lights could limit moth dispersal and if there was any sex bias in attraction to light. More specifically, we aimed to determine sex specific attraction radii for moths to street lights. 3.We tested these hypotheses by collecting moths for two years at an experimental setup. To estimate the attraction radii we developed a Markov model and related it to the acquired data. 4.Utilizing multinomial statistics, we found that attraction rates to lights in the middle of the matrix were substantially lower than predicted by the null hypothesis of equal attraction level (0.44 times). With the Markov model, we estimated that a corner-light was 2.77 times more attractive than a wing-light with an equivalent attraction radius of c. 23m around each light. We found neither sexual differences in the attraction rate nor in the attraction radius of males and females. Since we captured three times more males than females, we conclude that sex ratios are representative of operational sex ratios or of different flight activities. 5.These results provide evidence for street lights to limit moth dispersal, and that they seem to act equally on male and female moths. Consequently, public lighting might divide a suitable landscape into many small habitats. Therefore, it is reasonable to assume i) that public lighting near hedges and bushes or field margins reduces the quality of these important habitat structures, and ii) that public lighting near important habitat structures but not interfering with local movement may affect moth movement between patches. This article is protected by copyright. All rights reserved.
Address Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8790 ISBN Medium
Area Expedition Conference
Notes PMID:27146262 Approved no
Call Number LoNNe @ kyba @ Serial 1439
Permanent link to this record
 

 
Author Walch, O.J.; Cochran, A.; Forger, D.B.
Title A global quantification of “normal” sleep schedules using smartphone data Type Journal Article
Year 2016 Publication Science Advances Abbreviated Journal Science Advances
Volume 2 Issue 5 Pages e1501705-e1501705
Keywords Human Health; Sleep; *Circadian Rhythm; smartphone; society
Abstract The influence of the circadian clock on sleep scheduling has been studied extensively in the laboratory; however, the effects of society on sleep remain largely unquantified. We show how a smartphone app that we have developed, ENTRAIN, accurately collects data on sleep habits around the world. Through mathematical modeling and statistics, we find that social pressures weaken and/or conceal biological drives in the evening, leading individuals to delay their bedtime and shorten their sleep. A country’s average bedtime, but not average wake time, predicts sleep duration. We further show that mathematical models based on controlled laboratory experiments predict qualitative trends in sunrise, sunset, and light level; however, these effects are attenuated in the real world around bedtime. Additionally, we find that women schedule more sleep than men and that users reporting that they are typically exposed to outdoor light go to sleep earlier and sleep more than those reporting indoor light. Finally, we find that age is the primary determinant of sleep timing, and that age plays an important role in the variability of population-level sleep habits. This work better defines and personalizes “normal” sleep, produces hypotheses for future testing in the laboratory, and suggests important ways to counteract the global sleep crisis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1440
Permanent link to this record
 

 
Author Aubé, M.; Kocifaj, M.
Title Editorial: Special issue on remote sensing of light pollution Type Journal Article
Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 181 Issue Pages 1
Keywords Commentary
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1441
Permanent link to this record
 

 
Author WDS Killgore
Title Lighting the Way to Better Sleep and Health Type Journal Article
Year 2016 Publication Journal of Sleep Disorders: Treatment and Care Abbreviated Journal J Sleep Disor: Treat Care
Volume 05 Issue 01 Pages
Keywords Health; Editorial
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2325-9639 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1442
Permanent link to this record
 

 
Author Yuan, D.; Collage, R.D.; Huang, H.; Zhang, X.; Kautza, B.C.; Lewis, A.J.; Zuckerbraun, B.S.; Tsung, A.; Angus, D.C.; Rosengart, M.R.
Title Blue light reduces organ injury from ischemia and reperfusion Type Journal Article
Year 2016 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A
Volume 113 Issue 19 Pages 5239-5244
Keywords Biology
Abstract Evidence suggests that light and circadian rhythms profoundly influence the physiologic capacity with which an organism responds to stress. However, the ramifications of light spectrum on the course of critical illness remain to be determined. Here, we show that acute exposure to bright blue spectrum light reduces organ injury by comparison with bright red spectrum or ambient white fluorescent light in two murine models of sterile insult: warm liver ischemia/reperfusion (I/R) and unilateral renal I/R. Exposure to bright blue light before I/R reduced hepatocellular injury and necrosis and reduced acute kidney injury and necrosis. In both models, blue light reduced neutrophil influx, as evidenced by reduced myeloperoxidase (MPO) within each organ, and reduced the release of high-mobility group box 1 (HMGB1), a neutrophil chemotactant and key mediator in the pathogenesis of I/R injury. The protective mechanism appeared to involve an optic pathway and was mediated, in part, by a sympathetic (beta3 adrenergic) pathway that functioned independent of significant alterations in melatonin or corticosterone concentrations to regulate neutrophil recruitment. These data suggest that modifying the spectrum of light may offer therapeutic utility in sterile forms of cellular injury.
Address Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261 rosengartmr@upmc.edu
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:27114521 Approved no
Call Number LoNNe @ kyba @ Serial 1443
Permanent link to this record