toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Seltmann, S.; Trost, L.; Ter Maat, A.; Gahr, M. url  doi
openurl 
  Title Natural melatonin fluctuation and its minimally invasive simulation in the zebra finch Type Journal Article
  Year 2016 Publication PeerJ Abbreviated Journal  
  Volume 4 Issue Pages (down) e1939  
  Keywords Animals  
  Abstract Melatonin is a key hormone in the regulation of circadian rhythms of vertebrates, including songbirds. Understanding diurnal melatonin fluctuations and being able to reverse or simulate natural melatonin levels are critical to investigating the influence of melatonin on various behaviors such as singing in birds. Here we give a detailed overview of natural fluctuations in plasma melatonin concentration throughout the night in the zebra finch. As shown in previous studies, we confirm that “lights off” initiates melatonin production at night in a natural situation. Notably, we find that melatonin levels return to daytime levels as early as two hours prior to the end of the dark-phase in some individuals and 30 min before “lights on” in all animals, suggesting that the presence of light in the morning is not essential for cessation of melatonin production in zebra finches. Thus, the duration of melatonin production seems not to be specified by the length of night and might therefore be less likely to directly couple circadian and annual rhythms. Additionally, we show that natural melatonin levels can be successfully simulated through a combination of light-treatment (daytime levels during subjective night) and the application of melatonin containing skin-cream (nighttime levels during subjective day). Moreover, natural levels and their fluctuation in the transition from day to night can be imitated, enabling the decoupling of the effects of melatonin, for example on neuronal activity, from sleep and circadian rhythmicity. Taken together, our high-resolution profile of natural melatonin levels and manipulation techniques open up new possibilities to answer various melatonin related questions in songbirds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2167-8359 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1425  
Permanent link to this record
 

 
Author Lucassen, E. A.; Coomans, C. P.; van Putten, M.; de Kreij, S. R.; van Genugten, J. H.L.T.; Sutorius, R. P.M.; de Rooij, K. E.; van der Velde, M.; Verhoeve, S. L.; Smit, J. W.A.; Löwik, C. W.G.M.; Smits, H. H.; Guigas, B.; Aartsma-Rus, A. M.; Meijer, J. H. url  doi
openurl 
  Title Environmental 24-hr Cycles Are Essential for Health Type Journal Article
  Year 2016 Publication Current Biology Abbreviated Journal Current Biology  
  Volume 26 Issue 14 Pages (down) 1843-1853  
  Keywords Animals  
  Abstract Circadian rhythms are deeply rooted in the biology of virtually all organisms. The pervasive use of artificial lighting in modern society disrupts circadian rhythms and can be detrimental to our health. To investigate the relationship between disrupting circadian rhythmicity and disease, we exposed mice to continuous light (LL) for 24 weeks and measured several major health parameters. Long-term neuronal recordings revealed that 24 weeks of LL reduced rhythmicity in the central circadian pacemaker of the suprachiasmatic nucleus (SCN) by 70%. Strikingly, LL exposure also reduced skeletal muscle function (forelimb grip strength, wire hanging duration, and grid hanging duration), caused trabecular bone deterioration, and induced a transient pro-inflammatory state. After the mice were returned to a standard light-dark cycle, the SCN neurons rapidly recovered their normal high-amplitude rhythm, and the aforementioned health parameters returned to normal. These findings strongly suggest that a disrupted circadian rhythm reversibly induces detrimental effects on multiple biological processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1480  
Permanent link to this record
 

 
Author Ohayon, M.M.; Milesi, C. url  doi
openurl 
  Title Artificial Outdoor Nighttime Lights Associate with Altered Sleep Behavior in the American General Population Type Journal Article
  Year 2016 Publication Sleep Abbreviated Journal Sleep  
  Volume 39 Issue 6 Pages (down) 1311-1320  
  Keywords Human Health; Remote Sensing; Sleep  
  Abstract STUDY OBJECTIVES: Our study aims to explore the associations between outdoor nighttime lights (ONL) and sleep patterns in the human population. METHODS: Cross-sectional telephone study of a representative sample of the general US population age 18 y or older. 19,136 noninstitutionalized individuals (participation rate: 83.2%) were interviewed by telephone. The Sleep-EVAL expert system administered questions on life and sleeping habits; health; sleep, mental and organic disorders (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision; International Classification of Sleep Disorders, Second Edition; International Classification of Diseases, 10(th) Edition). Individuals were geolocated by longitude and latitude. Outdoor nighttime light measurements were obtained from the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS), with nighttime passes taking place between 19:30 and 22:30 local time. Light data were correlated precisely to the geolocation of each participant of the general population sample. RESULTS: Living in areas with greater ONL was associated with delayed bedtime (P < 0.0001) and wake up time (P < 0.0001), shorter sleep duration (P < 0.01), and increased daytime sleepiness (P < 0.0001). Living in areas with greater ONL also increased the dissatisfaction with sleep quantity and quality (P < 0.0001) and the likelihood of having a diagnostic profile congruent with a circadian rhythm disorder (P < 0.0001). CONCLUSIONS: Although they improve the overall safety of people and traffic, nighttime lights in our streets and cities are clearly linked with modifications in human sleep behaviors and also impinge on the daytime functioning of individuals living in areas with greater ONL.  
  Address NASA Ames Research Center, Moffett Field, CA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0161-8105 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27091523; PMCID:PMC4863221 Approved no  
  Call Number GFZ @ kyba @ Serial 2551  
Permanent link to this record
 

 
Author Kintisch, E. url  doi
openurl 
  Title Voyage into darkness Type
  Year 2016 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 351 Issue 6279 Pages (down) 1254-1257  
  Keywords Commentary  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26989231 Approved no  
  Call Number LoNNe @ kyba @ Serial 1401  
Permanent link to this record
 

 
Author Luarte, T.; Bonta, C.C.; Silva-Rodriguez, E.A.; Quijon, P.A.; Miranda, C.; Farias, A.A.; Duarte, C. url  doi
openurl 
  Title Light pollution reduces activity, food consumption and growth rates in a sandy beach invertebrate Type Journal Article
  Year 2016 Publication Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal Environ Pollut  
  Volume 218 Issue Pages (down) 1147-1153  
  Keywords Animals  
  Abstract The continued growth of human activity and infrastructure has translated into a widespread increase in light pollution. Natural daylight and moonlight cycles play a fundamental role for many organisms and ecological processes, so an increase in light pollution may have profound effects on communities and ecosystem services. Studies assessing ecological light pollution (ELP) effects on sandy beach organisms have lagged behind the study of other sources of disturbance. Hence, we assessed the influence of this stressor on locomotor activity, foraging behavior, absorption efficiency and growth rate of adults of the talitrid amphipod Orchestoidea tuberculata. In the field, an artificial light system was assembled to assess the local influence of artificial light conditions on the amphipod's locomotor activity and use of food patches in comparison to natural (ambient) conditions. Meanwhile in the laboratory, two experimental chambers were set to assess amphipod locomotor activity, consumption rates, absorption efficiency and growth under artificial light in comparison to natural light-dark cycles. Our results indicate that artificial light have significantly adverse effects on the activity patterns and foraging behavior of the amphipods, resulting on reduced consumption and growth rates. Given the steady increase in artificial light pollution here and elsewhere, sandy beach communities could be negatively affected, with unexpected consequences for the whole ecosystem.  
  Address Departamento de Ecologia y Biodiversidad, Facultad de Ecologia y Recursos Naturales, Universidad Andres Bello, Republica no. 440, Santiago, Chile; Center for the Study of Multiple-drivers on Marine Socio-ecological Systems (MUSELS), Universidad de Concepcion, Concepcion, Chile. Electronic address: cristian.duarte@unab.cl  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27589894 Approved no  
  Call Number LoNNe @ kyba @ Serial 1516  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: