toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Reinberg, A.; Smolensky, M.H.; Touitou, Y. url  doi
openurl 
  Title The full moon as a synchronizer of circa-monthly biological rhythms: Chronobiologic perspectives based on multidisciplinary naturalistic research Type Journal Article
  Year 2016 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 33 Issue 5 Pages (down) 465-479  
  Keywords Moonlight; Commentary; Animals; Plants; Human Health  
  Abstract Biological rhythmicity is presumed to be an advantageous genetic adaptation of fitness and survival value resulting from evolution of life forms in an environment that varies predictably-in-time during the 24 h, month, and year. The 24 h light/dark cycle is the prime synchronizer of circadian periodicities, and its modulation over the course of the year, in terms of daytime photoperiod length, is a prime synchronizer of circannual periodicities. Circadian and circannual rhythms have been the major research focus of most scientists. Circa-monthly rhythms triggered or synchronized by the 29.5 day lunar cycle of nighttime light intensity, or specifically the light of the full moon, although explored in waterborne and certain other species, have received far less study, perhaps because of associations with ancient mythology and/or an attitude naturalistic studies are of lesser merit than ones that entail molecular mechanisms. In this editorial, we cite our recent discovery through multidisciplinary naturalistic investigation of a highly integrated circadian, circa-monthly, and circannual time structure, synchronized by the natural ambient nyctohemeral, lunar, and annual light cycles, of the Peruvian apple cactus (C. peruvianus) flowering and reproductive processes that occur in close temporal coordination with like rhythms of the honey bee as its pollinator. This finding led us to explore the preservation of this integrated biological time structure, synchronized and/or triggered by environmental light cues and cycles, in the reproduction of other species, including Homo sapiens, and how the artificial light environment of today in which humans reside may be negatively affecting human reproduction efficiency.  
  Address a Unite de Chronobiologie , Fondation A de Rothschild , Paris cedex 19 , France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27019304 Approved no  
  Call Number LoNNe @ kyba @ Serial 1460  
Permanent link to this record
 

 
Author Versteeg, R.I.; Stenvers, D.J.; Kalsbeek, A.; Bisschop, P.H.; Serlie, M.J.; la Fleur, S.E. url  doi
openurl 
  Title Nutrition in the spotlight: metabolic effects of environmental light Type Journal Article
  Year 2016 Publication The Proceedings of the Nutrition Society Abbreviated Journal Proc Nutr Soc  
  Volume 75 Issue 4 Pages (down) 451-463  
  Keywords Animals; Human Health  
  Abstract Use of artificial light resulted in relative independence from the natural light-dark (LD) cycle, allowing human subjects to shift the timing of food intake and work to convenient times. However, the increase in artificial light exposure parallels the increase in obesity prevalence. Light is the dominant Zeitgeber for the central circadian clock, which resides within the hypothalamic suprachiasmatic nucleus, and coordinates daily rhythm in feeding behaviour and metabolism. Eating during inappropriate light conditions may result in metabolic disease via changes in the biological clock. In this review, we describe the physiological role of light in the circadian timing system and explore the interaction between the circadian timing system and metabolism. Furthermore, we discuss the acute and chronic effects of artificial light exposure on food intake and energy metabolism in animals and human subjects. We propose that living in synchrony with the natural daily LD cycle promotes metabolic health and increased exposure to artificial light at inappropriate times of day has adverse effects on metabolism, feeding behaviour and body weight regulation. Reducing the negative side effects of the extensive use of artificial light in human subjects might be useful in the prevention of metabolic disease.  
  Address Department of Endocrinology & Metabolism,Academic Medical Center,University of Amsterdam,Meibergdreef 9,F2-154, 1105 AZ Amsterdam-Zuidoost,The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0029-6651 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27499509 Approved no  
  Call Number LoNNe @ kyba @ Serial 1504  
Permanent link to this record
 

 
Author Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Yang, C.; Li, L.; Huang, C.; Chen, Z.; Liu, R.; Wu, J. url  doi
openurl 
  Title Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data Type Journal Article
  Year 2016 Publication Applied Energy Abbreviated Journal Applied Energy  
  Volume 184 Issue Pages (down) 450-463  
  Keywords Remote Sensing  
  Abstract The rapid development of global industrialization and urbanization has resulted in a great deal of electric power consumption (EPC), which is closely related to economic growth, carbon emissions, and the long-term stability of global climate. This study attempts to detect spatiotemporal dynamics of global EPC using the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) nighttime stable light (NSL) data. The global NSL data from 1992 to 2013 were intercalibrated via a modified invariant region (MIR) method. The global EPC at 1 km resolution was then modeled using the intercalibrated NSL data to assess spatiotemporal dynamics of EPC from a global scale down to continental and national scales. The results showed that the MIR method not only reduced the saturated lighted pixels, but also improved the continuity and comparability of the NSL data. An accuracy assessment was undertaken and confined that the intercalibrated NSL data were relatively suitable and accurate for estimating EPC in the world. Spatiotemporal variations of EPC were mainly identified in Europe, North America, and Asia. Special attention should be paid to China where the high grade and high-growth type of EPC covered 0.409% and 1.041% of the total country area during the study period, respectively. The results of this study greatly enhance the understanding of spatiotemporal dynamics of global EPC at the multiple scales. They will provide a scientific evidence base for tracking spatiotemporal dynamics of global EPC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0306-2619 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2486  
Permanent link to this record
 

 
Author Higuchi, S.; Lee, S.-I.; Kozaki, T.; Harada, T.; Tanaka, I. url  doi
openurl 
  Title Late circadian phase in adults and children is correlated with use of high color temperature light at home at night Type Journal Article
  Year 2016 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 33 Issue 4 Pages (down) 448-452  
  Keywords Children; circadian rhythm; light; melatonin  
  Abstract Light is the strongest synchronizer of human circadian rhythms, and exposure to residential light at night reportedly causes a delay of circadian rhythms. The present study was conducted to investigate the association between color temperature of light at home and circadian phase of salivary melatonin in adults and children. Twenty healthy children (mean age: 9.7 year) and 17 of their parents (mean age: 41.9 years) participated in the experiment. Circadian phase assessments were made with dim light melatonin onset (DLMO). There were large individual variations in DLMO both in adults and children. The average DLMO in adults and in children were 21:50 +/- 1:12 and 20:55 +/- 0:44, respectively. The average illuminance and color temperature of light at eye level were 139.6 +/- 82.7 lx and 3862.0 +/- 965.6 K, respectively. There were significant correlations between color temperature of light and DLMO in adults (r = 0.735, p < 0.01) and children (r = 0.479, p < 0.05), although no significant correlations were found between illuminance level and DLMO. The results suggest that high color temperature light at home might be a cause of the delay of circadian phase in adults and children.  
  Address a Department of Human Science, Faculty of Design , Kyushu University , Fukuoka , Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27010525 Approved no  
  Call Number LoNNe @ kyba @ Serial 1404  
Permanent link to this record
 

 
Author Tewolde, F.T.; Lu, N.; Shiina, K.; Maruo, T.; Takagaki, M.; Kozai, T.; Yamori, W. url  doi
openurl 
  Title Nighttime Supplemental LED Inter-lighting Improves Growth and Yield of Single-Truss Tomatoes by Enhancing Photosynthesis in Both Winter and Summer Type Journal Article
  Year 2016 Publication Frontiers in Plant Science Abbreviated Journal Front Plant Sci  
  Volume 7 Issue Pages (down) 448  
  Keywords Plants; LED; fruit quality; lighting period; photosynthesis; plant factory; single-truss tomato; supplemental lighting; yield  
  Abstract Greenhouses with sophisticated environmental control systems, or so-called plant factories with solar light, enable growers to achieve high yields of produce with desirable qualities. In a greenhouse crop with high planting density, low photosynthetic photon flux density (PPFD) at the lower leaves tends to limit plant growth, especially in the winter when the solar altitude and PPFD at the canopy are low and day length is shorter than in summer. Therefore, providing supplemental lighting to the lower canopy can increase year-round productivity. However, supplemental lighting can be expensive. In some places, the cost of electricity is lower at night, but the effect of using supplemental light at night has not yet been examined. In this study, we examined the effects of supplemental LED inter-lighting (LED inter-lighting hereafter) during the daytime or nighttime on photosynthesis, growth, and yield of single-truss tomato plants both in winter and summer. We used LED inter-lighting modules with combined red and blue light to illuminate lower leaves right after the first anthesis. The PPFD of this light was 165 mumol m(-2) s(-1) measured at 10 cm from the LED module. LED inter-lighting was provided from 4:00 am to 4:00 pm for the daytime treatments and from 10:00 pm to 10:00 am for the nighttime treatments. Plants exposed only to solar light were used as controls. Daytime LED inter-lighting increased the photosynthetic capacity of middle and lower canopy leaves, which significantly increased yield by 27% in winter; however, photosynthetic capacity and yield were not significantly increased during summer. Nighttime LED inter-lighting increased photosynthetic capacity in both winter and summer, and yield increased by 24% in winter and 12% in summer. In addition, nighttime LED inter-lighting in winter significantly increased the total soluble solids and ascorbic acid content of the tomato fruits, by 20 and 25%, respectively. Use of nighttime LED inter-lighting was also more cost-effective than daytime inter-lighting. Thus, nighttime LED inter-lighting can effectively improve tomato plant growth and yield with lower energy cost compared with daytime both in summer and winter.  
  Address Center for Environment, Health and Field Sciences, Chiba University, Kashiwa, Japan; Department of Biological Sciences, Faculty of Science, The University of Tokyo, Japan  
  Corporate Author Thesis  
  Publisher Frontiers Media S.A. Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-462X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27092163; PMCID:PMC4823311 Approved no  
  Call Number IDA @ john @ Serial 1434  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: