toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aubé, M.; Kocifaj, M. url  doi
openurl 
  Title Editorial: Special issue on remote sensing of light pollution Type Journal Article
  Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 181 Issue Pages (up) 1  
  Keywords Commentary  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1441  
Permanent link to this record
 

 
Author Schroer, S.; Hölker, F. url  doi
isbn  openurl
  Title Impact of Lighting on Flora and Fauna Type Book Chapter
  Year 2016 Publication Handbook of Advanced Lighting Technology Abbreviated Journal  
  Volume Issue Pages (up) 1-33  
  Keywords Ecology; Lighting; Artificial light at night; ALAN; Plants; Animals; review  
  Abstract Technology, especially artificial light at night (ALAN), often has unexpected impacts on the environment. This chapter addresses both the perception of light by various organisms and the impact of ALAN on flora and fauna. The responses to ALAN are subdivided into the effects of light intensity, color spectra, and duration and timing of illumination. The ways organisms perceive light can be as variable as the habitats they live in. ALAN often interferes with natural light information. It is rarely neutral and has significant impacts beyond human perception. For example, UV light reflection of generative plant parts or the direction of light is used by many organisms as information for foraging, finding spawning sites, or communication. Contemporary outdoor lighting often lacks sustainable planning, even though the protection of species, habitat, and human well-being could be improved by adopting simple technical measures. The increasing use of ALAN with high intensities in the blue part of the spectrum, e.g., fluorescent light and LEDs, is discussed as a critical trend. Blue light is a major circadian signal in higher vertebrates and can substantially impact the orientation of organisms such as numerous insect species. A better understanding of how various types and sources of artificial light, and how organisms perceive ALAN, will be an important step towards more sustainable lighting. Such knowledge is the basis for sustainable lighting planning and the development of solutions to protect biodiversity from the effects of outdoor lighting. Maps that describe the rapid changes in ALAN are urgently needed. In addition, measures are required to reduce the increasing use and intensity of ALAN in more remote areas as signaling thresholds in flora and fauna at night are often close to moonlight intensity and far below streetlight levels.  
  Address Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany; schroer(at)igb-berlin.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-00295-8 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1470  
Permanent link to this record
 

 
Author Gutierrez-Escolar, A.; Castillo-Martinez, A.; Gomez-Pulido, J.; Gutierrez-Martinez, J.-M.; González-Seco, E.; Stapic, Z. url  doi
openurl 
  Title A review of energy efficiency label of street lighting systems Type Journal Article
  Year 2016 Publication Energy Efficiency Abbreviated Journal Energy Efficiency  
  Volume Issue Pages (up) 1-18  
  Keywords Energy; Energy Efficiency Index; Total Luminous Flux; Energy Efficiency Label; Electronic Ballast; Energy Performance Indicator; Lighting Project; Energy Efficiency Class; Energy Efficiency Level; Road Lighting; Active PowerLighting System; Wind Turbine; Current Energy Efficiency; Luminous Efficacy; Electricity Consumption; Kiviat diagram; Lamp; Light pollution; Pie chart; Dimming luminous flux; review  
  Abstract There are very few countries that have provisions addressing the energy efficiency of the whole street lighting system, such as Spain or the Netherlands. Nevertheless, there is not an agreement about how energy efficiency must be assessed. The Spanish Government contemplates it in the Royal Decree 1890/2008 with the goal of improving energy savings and efficiency. However, this has not obtained the expected results. Nowadays, energy efficiency of this kind of systems is assessed using a label. In the case of Spain, this label only assesses one magnitude. The contributions of this paper are two evaluation systems (kiviat diagram and pie chart) which assess five magnitudes: lamps, energy efficiency index, light pollution, renewable energy contribution, and harness of the luminous flux using dimming. After that, a survey was done to study several subjects: (1) if citizens are aware about the efficiency of street lighting systems, (2) whether the sample of colors used in the label is adequate, and (3) if our proposed systems could replace the current evaluation system. Finally, the paper finishes with the conclusions of the survey.  
  Address Department of Computer Sciences, Polytechnic School, University of Alcala, Road Madrid-Barcelona, Km 33.6, Alcala de Henares, 28871, Spain  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1570-6478 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1471  
Permanent link to this record
 

 
Author ffrench-Constant, R.; Somers-Yeates, R.; Bennie, J.; Economou, T.; Hodgson, D.; Spalding, A.; McGregor, P. url  doi
openurl 
  Title Light pollution is associated with earlier tree budburst across the United Kingdom Type Journal Article
  Year 2016 Publication Proceedings of the Royal Society B: Biological Sciences Abbreviated Journal Proc Roy Soc B Biol Sci  
  Volume 283 Issue 1833 Pages (up) 1-9  
  Keywords Plants; light pollution, phenology, species interactions, tree budburst, temperature, urban heat islands; United Kingdom  
  Abstract The ecological impact of night-time lighting is of concern because of its well-demonstrated effects on animal behaviour. However, the potential of light pollution to change plant phenology and its corresponding knock-on effects on associated herbivores are less clear. Here, we test if artificial lighting can advance the timing of budburst in trees. We took a UK-wide 13 year dataset of spatially referenced budburst data from four deciduous tree species and matched it with both satellite imagery of night-time lighting and average spring temperature. We find that budburst occurs up to 7.5 days earlier in brighter areas, with the relationship being more pronounced for later-budding species. Excluding large urban areas from the analysis showed an even more pronounced advance of budburst, confirming that the urban ‘heat-island’ effect is not the sole cause of earlier urban budburst. Similarly, the advance in budburst across all sites is too large to be explained by increases in temperature alone. This dramatic advance of budburst illustrates the need for further experimental investigation into the impact of artificial night-time lighting on plant phenology and subsequent species interactions. As light pollution is a growing global phenomenon, the findings of this study are likely to be applicable to a wide range of species interactions across the world.  
  Address Centre for Ecology and Conservation, and 2 Environment and Sustainability Institute, University of Exeter, Penryn TR10 9EZ, UK; rf222(at)exeter.ac.uk  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1472  
Permanent link to this record
 

 
Author Bolton, D.; Mayer-Pinto, M.; Clark, G.F.; Dafforn, K.A.; Brassil, W.A.; Becker, A.; Johnston, E.L. url  doi
openurl 
  Title Coastal urban lighting has ecological consequences for multiple trophic levels under the sea Type Journal Article
  Year 2016 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ  
  Volume 576 Issue Pages (up) 1-9  
  Keywords Animals; Ecology  
  Abstract Urban land and seascapes are increasingly exposed to artificial lighting at night (ALAN), which is a significant source of light pollution. A broad range of ecological effects are associated with ALAN, but the changes to ecological processes remain largely unstudied. Predation is a key ecological process that structures assemblages and responds to natural cycles of light and dark. We investigated the effect of ALAN on fish predatory behaviour, and sessile invertebrate prey assemblages. Over 21days fish and sessile assemblages were exposed to 3 light treatments (Day, Night and ALAN). An array of LED spotlights was installed under a wharf to create the ALAN treatments. We used GoPro cameras to film during the day and ALAN treatments, and a Dual frequency IDentification SONar (DIDSON) to film during the night treatments. Fish were most abundant during unlit nights, but were also relatively sedentary. Predatory behaviour was greatest during the day and under ALAN than at night, suggesting that fish are using structures for non-feeding purposes (e.g. shelter) at night, but artificial light dramatically increases their predatory behaviour. Altered predator behaviour corresponded with structural changes to sessile prey assemblages among the experimental lighting treatments. We demonstrate the direct effects of artificial lighting on fish behaviour and the concomitant indirect effects on sessile assemblage structure. Current and future projected use of artificial lights has the potential to significantly affect predator-prey interactions in marine systems by altering habitat use for both predators and prey. However, developments in lighting technology are a promising avenue for mitigation. This is among the first empirical evidence from the marine system on how ALAN can directly alter predation, a fundamental ecosystem process, and have indirect trophic consequences.  
  Address Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia; Sydney Institute of Marine Sciences, Mosman, NSW 2088, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27780095 Approved no  
  Call Number LoNNe @ kyba @ Serial 1548  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: