toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yuan, D.; Collage, R.D.; Huang, H.; Zhang, X.; Kautza, B.C.; Lewis, A.J.; Zuckerbraun, B.S.; Tsung, A.; Angus, D.C.; Rosengart, M.R. url  doi
openurl 
  Title Blue light reduces organ injury from ischemia and reperfusion Type Journal Article
  Year 2016 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A  
  Volume 113 Issue 19 Pages 5239-5244  
  Keywords Biology  
  Abstract Evidence suggests that light and circadian rhythms profoundly influence the physiologic capacity with which an organism responds to stress. However, the ramifications of light spectrum on the course of critical illness remain to be determined. Here, we show that acute exposure to bright blue spectrum light reduces organ injury by comparison with bright red spectrum or ambient white fluorescent light in two murine models of sterile insult: warm liver ischemia/reperfusion (I/R) and unilateral renal I/R. Exposure to bright blue light before I/R reduced hepatocellular injury and necrosis and reduced acute kidney injury and necrosis. In both models, blue light reduced neutrophil influx, as evidenced by reduced myeloperoxidase (MPO) within each organ, and reduced the release of high-mobility group box 1 (HMGB1), a neutrophil chemotactant and key mediator in the pathogenesis of I/R injury. The protective mechanism appeared to involve an optic pathway and was mediated, in part, by a sympathetic (beta3 adrenergic) pathway that functioned independent of significant alterations in melatonin or corticosterone concentrations to regulate neutrophil recruitment. These data suggest that modifying the spectrum of light may offer therapeutic utility in sterile forms of cellular injury.  
  Address Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261 rosengartmr@upmc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27114521 Approved no  
  Call Number LoNNe @ kyba @ Serial 1443  
Permanent link to this record
 

 
Author Travis, R.C.; Balkwill, A.; Fensom, G.K.; Appleby, P.N.; Reeves, G.K.; Wang, X.-S.; Roddam, A.W.; Gathani, T.; Peto, R.; Green, J.; Key, T.J.; Beral, V. url  doi
openurl 
  Title Night Shift Work and Breast Cancer Incidence: Three Prospective Studies and Meta-analysis of Published Studies Type Journal Article
  Year 2016 Publication Journal of the National Cancer Institute Abbreviated Journal JNCI J Natl Cancer Inst  
  Volume 108 Issue 12 Pages djw169  
  Keywords Human Health  
  Abstract Background: It has been proposed that night shift work could increase breast cancer incidence. A 2007 World Health Organization review concluded, mainly from animal evidence, that shift work involving circadian disruption is probably carcinogenic to humans. We therefore aimed to generate prospective epidemiological evidence on night shift work and breast cancer incidence.

Methods: Overall, 522 246 Million Women Study, 22 559 EPIC-Oxford, and 251 045 UK Biobank participants answered questions on shift work and were followed for incident cancer. Cox regression yielded multivariable-adjusted breast cancer incidence rate ratios (RRs) and 95% confidence intervals (CIs) for night shift work vs no night shift work, and likelihood ratio tests for interaction were used to assess heterogeneity. Our meta-analyses combined these and relative risks from the seven previously published prospective studies (1.4 million women in total), using inverse-variance weighted averages of the study-specific log RRs.

Results: In the Million Women Study, EPIC-Oxford, and UK Biobank, respectively, 673, 28, and 67 women who reported night shift work developed breast cancer, and the RRs for any vs no night shift work were 1.00 (95% CI = 0.92 to 1.08), 1.07 (95% CI = 0.71 to 1.62), and 0.78 (95% CI = 0.61 to 1.00). In the Million Women Study, the RR for 20 or more years of night shift work was 1.00 (95% CI = 0.81 to 1.23), with no statistically significant heterogeneity by sleep patterns or breast cancer risk factors. Our meta-analysis of all 10 prospective studies included 4660 breast cancers in women reporting night shift work; compared with other women, the combined relative risks were 0.99 (95% CI = 0.95 to 1.03) for any night shift work, 1.01 (95% CI = 0.93 to 1.10) for 20 or more years of night shift work, and 1.00 (95% CI = 0.87 to 1.14) for 30 or more years.

Conclusions: The totality of the prospective evidence shows that night shift work, including long-term shift work, has little or no effect on breast cancer incidence.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0027-8874 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1540  
Permanent link to this record
 

 
Author Versteeg, R.I.; Stenvers, D.J.; Kalsbeek, A.; Bisschop, P.H.; Serlie, M.J.; la Fleur, S.E. url  doi
openurl 
  Title Nutrition in the spotlight: metabolic effects of environmental light Type Journal Article
  Year 2016 Publication The Proceedings of the Nutrition Society Abbreviated Journal Proc Nutr Soc  
  Volume 75 Issue 4 Pages 451-463  
  Keywords Animals; Human Health  
  Abstract Use of artificial light resulted in relative independence from the natural light-dark (LD) cycle, allowing human subjects to shift the timing of food intake and work to convenient times. However, the increase in artificial light exposure parallels the increase in obesity prevalence. Light is the dominant Zeitgeber for the central circadian clock, which resides within the hypothalamic suprachiasmatic nucleus, and coordinates daily rhythm in feeding behaviour and metabolism. Eating during inappropriate light conditions may result in metabolic disease via changes in the biological clock. In this review, we describe the physiological role of light in the circadian timing system and explore the interaction between the circadian timing system and metabolism. Furthermore, we discuss the acute and chronic effects of artificial light exposure on food intake and energy metabolism in animals and human subjects. We propose that living in synchrony with the natural daily LD cycle promotes metabolic health and increased exposure to artificial light at inappropriate times of day has adverse effects on metabolism, feeding behaviour and body weight regulation. Reducing the negative side effects of the extensive use of artificial light in human subjects might be useful in the prevention of metabolic disease.  
  Address Department of Endocrinology & Metabolism,Academic Medical Center,University of Amsterdam,Meibergdreef 9,F2-154, 1105 AZ Amsterdam-Zuidoost,The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0029-6651 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27499509 Approved no  
  Call Number LoNNe @ kyba @ Serial 1504  
Permanent link to this record
 

 
Author Firebaugh, A.; Haynes, K.J. url  doi
openurl 
  Title Experimental tests of light-pollution impacts on nocturnal insect courtship and dispersal Type Journal Article
  Year 2016 Publication Oecologia Abbreviated Journal Oecologia  
  Volume Issue Pages  
  Keywords Animals; Ecology  
  Abstract Though a number of effects of artificial light pollution on behavior and physiology have been described, there is little understanding of their consequences for the growth and distribution of populations. Here, we document impacts of light pollution on aspects of firefly population ecology and underlying mating behaviors. Many firefly species have a unique communication system whereby bioluminescent flashes are used in courtship displays to find and attract mates. We performed a series of manipulative field experiments in which we quantified the effects of adding artificial nighttime lighting on abundances and total flashing activity of fireflies, courtship behaviors and mating between tethered females and free-flying males, and dispersal distances of marked individuals. We show that light pollution reduces flashing activities in a dark-active firefly species (Photuris versicolor) by 69.69 % and courtship behavior and mating success in a twilight-active species (Photinus pyralis). Though courtship behavior and mating success of Photinus pyralis was reduced by light pollution, we found no effects of light pollution on male dispersal in this species. Our findings suggest that light pollution is likely to adversely impact firefly populations, and contribute to wider discussions about the ecological consequences of sensory pollution.  
  Address Blandy Experimental Farm, University of Virginia, 400 Blandy Farm Lane, Boyce, VA, 22620, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0029-8549 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27646716 Approved no  
  Call Number LoNNe @ kyba @ Serial 1526  
Permanent link to this record
 

 
Author Okuliarova, M.; Molcan, L.; Zeman, M. url  doi
openurl 
  Title Decreased emotional reactivity of rats exposed to repeated phase shifts of light-dark cycle Type Journal Article
  Year 2016 Publication Physiology & Behavior Abbreviated Journal Physiology & Behavior  
  Volume 156 Issue Pages 16-23  
  Keywords Animals  
  Abstract Disturbed light–dark (LD) cycles are associated with circadian disruption of physiological and behavioural rhythms and in turn with an increased risk of disease development. However, direct causal links and underlying mechanisms leading to negative health consequences still need to be revealed. In the present study, we exposed male Wistar rats to repeated phase shifts of LD cycle and analysed their ability to cope with mild emotional stressors. In experiment 1, rats were submitted to either a regular 12:12 LD cycle (CTRL rats) or 8-h phase delay shifts applied every 2 days for 5 weeks (SHIFT rats). Subsequently, the behaviour was examined in the open-field, black–white box and elevated plus maze tests. In experiment 2, changes in blood pressure (BP), heart rate (HR) as well as the activity of autonomic nervous system were measured in telemeterised rats in response to open-field and black–white box tests before and after 5-week exposure to shifted LD regime. Locomotor activity was consistently higher in SHIFT than CTRL rats in in the open-field and black–white box tests. Interestingly, in the elevated plus maze, SHIFT rats displayed increased risk assessment and decreased grooming compared to CTRL rats. Anxiety measures were affected only in the black–white box, where SHIFT rats displayed reduced anxiety-like behaviour compared to CTRL rats. Differences in behavioural reactivity between SHIFT and CTRL rats did not correspond with BP and HR changes. However, exposure to phase shifts increased the sympathovagal reactivity in the black–white box. Together, our results demonstrated that disturbed LD conditions decreased emotional reactivity of rats and affected their ability to cope with emotional stressors denoting an additional risk mechanism linking disrupted circadian organisation to adverse health effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-9384 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1331  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: