toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Borniger, J.C.; Nelson, R.J. url  doi
openurl 
  Title Photoperiodic Regulation of Behavior: Peromyscus as a Model System Type Journal Article
  Year 2016 Publication Seminars in Cell & Developmental Biology Abbreviated Journal Seminars in Cell & Developmental Biology  
  Volume 33 Issue 8 Pages 946-948  
  Keywords (up) Animals  
  Abstract Winter and summer present vastly different challenges to animals living outside of the tropics. To survive and reproduce, individuals must anticipate seasonal environmental changes and adjust physiology and behavior accordingly. Photoperiod (day length) offers a relatively ‘noise free’ environmental signal that non-tropical animals use to tell the time of year, and whether winter is approaching or receding. In some cases, photoperiodic signals may be fine-tuned by other proximate cues such as food availability or temperature. The pineal hormone, melatonin, is a primary physiological transducer of the photoperiodic signal. It tracks night length and provokes changes in physiology and behavior at appropriate times of the year. Because of their wide latitudinal distribution, Peromyscus has been well studied in the context of photoperiodic regulation of physiology and behavior. Here, we discuss how photoperiodic signals are transduced by pineal melatonin, how melatonin acts on target tissues, and subsequent consequences for behavior. Using a life-history paradigm involving trade-offs between the immune and reproductive systems, specific emphasis is placed on aggression, metabolism, and cognition. We discuss future directions including examining the effects of light pollution on photoperiodism, genetic manipulations to test the role of specific genes in the photoperiodic response, and using Peromyscus to test evolutionary theories of aging.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1084-9521 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1469  
Permanent link to this record
 

 
Author Lucassen, E. A.; Coomans, C. P.; van Putten, M.; de Kreij, S. R.; van Genugten, J. H.L.T.; Sutorius, R. P.M.; de Rooij, K. E.; van der Velde, M.; Verhoeve, S. L.; Smit, J. W.A.; Löwik, C. W.G.M.; Smits, H. H.; Guigas, B.; Aartsma-Rus, A. M.; Meijer, J. H. url  doi
openurl 
  Title Environmental 24-hr Cycles Are Essential for Health Type Journal Article
  Year 2016 Publication Current Biology Abbreviated Journal Current Biology  
  Volume 26 Issue 14 Pages 1843-1853  
  Keywords (up) Animals  
  Abstract Circadian rhythms are deeply rooted in the biology of virtually all organisms. The pervasive use of artificial lighting in modern society disrupts circadian rhythms and can be detrimental to our health. To investigate the relationship between disrupting circadian rhythmicity and disease, we exposed mice to continuous light (LL) for 24 weeks and measured several major health parameters. Long-term neuronal recordings revealed that 24 weeks of LL reduced rhythmicity in the central circadian pacemaker of the suprachiasmatic nucleus (SCN) by 70%. Strikingly, LL exposure also reduced skeletal muscle function (forelimb grip strength, wire hanging duration, and grid hanging duration), caused trabecular bone deterioration, and induced a transient pro-inflammatory state. After the mice were returned to a standard light-dark cycle, the SCN neurons rapidly recovered their normal high-amplitude rhythm, and the aforementioned health parameters returned to normal. These findings strongly suggest that a disrupted circadian rhythm reversibly induces detrimental effects on multiple biological processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1480  
Permanent link to this record
 

 
Author Dorado-Correa, A.M.; Rodríguez-Rocha, M.; Brumm, H. url  doi
openurl 
  Title Anthropogenic noise, but not artificial light levels predicts song behaviour in an equatorial bird Type Journal Article
  Year 2016 Publication Royal Society Open Science Abbreviated Journal R. Soc. open sci.  
  Volume 3 Issue 7 Pages 160231  
  Keywords (up) Animals  
  Abstract Birds in cities start singing earlier in the morning than in rural areas; commonly this shift is attributed to light pollution. Some studies have suggested that traffic noise has a stronger influence on singing activity than artificial light does. Changes in the timing of singing behaviour in relation to noise and light pollution have only been investigated in the temperate zones. Tropical birds, however, experience little seasonal variation in day length and may be less dependent on light intensity as a modifier for reproductive behaviours such as song. To test whether noise or light pollution has a stronger impact on the dawn chorus of a tropical bird, we investigated the singing behaviour of rufous-collared sparrows (Zonotrichia capensis) in Bogota, Colombia at two times during the year. We found that birds in places with high noise levels started to sing earlier. Light pollution did not have a significant effect. Birds may begin to sing earlier in noisy areas to avoid acoustic masking by traffic later in the morning. Our results also suggest that some tropical birds may be less sensitive to variations in day length and thus less sensitive to light pollution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2054-5703 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1484  
Permanent link to this record
 

 
Author Papagiannakopoulos, T.; Bauer, M.R.; Davidson, S.M.; Heimann, M.; Subbaraj, L.; Bhutkar, A.; Bartlebaugh, J.; Vander Heiden, M.G.; Jacks, T. url  doi
openurl 
  Title Circadian Rhythm Disruption Promotes Lung Tumorigenesis Type Journal Article
  Year 2016 Publication Cell Metabolism Abbreviated Journal Cell Metab  
  Volume 24 Issue 2 Pages 324–331  
  Keywords (up) Animals  
  Abstract Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression.  
  Address David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Electronic address: tjacks@mit.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-4131 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27476975 Approved no  
  Call Number LoNNe @ kyba @ Serial 1497  
Permanent link to this record
 

 
Author Plummer, K.E.; Hale, J.D.; O'Callaghan, M.J.; Sadler, J.P.; Siriwardena, G.M. url  doi
openurl 
  Title Investigating the impact of street lighting changes on garden moth communities Type Journal Article
  Year 2016 Publication Journal of Urban Ecology Abbreviated Journal J Urban Ecol  
  Volume 2 Issue 1 Pages juw004  
  Keywords (up) Animals  
  Abstract Night time illumination of cities is undergoing radical change through the adoption of new street lighting technologies, but the impacts of these large-scale changes on biodiversity have not been explored. Moths are of particular concern because of their nocturnal ‘flight-to-light’ responses. Here we examine in situ effects of (1) street lamp replacement and (2) the spatial distribution of local street lighting on garden moth communities in Birmingham, UK, to determine whether current shifts in street lighting infrastructure are leading to an increased attraction of moths into suburban areas. Using a unique before-after-control-impact survey, we show that switching from narrow (low-pressure sodium) to broad spectrum (high-pressure sodium) lamps significantly increases the diversity of macro-moths in suburban gardens. Furthermore, we demonstrate the complex ways in which the moth community differentially responds to variation in street lighting characteristics. In particular we found that macro-moth attraction was greatest at high lamp densities, whilst micro-moth families responded more strongly to street lamp proximity and the density of UV-emitting lamps specifically. Our findings indicate that moths are attracted to suburban gardens with closer, more dense and more spectrally diverse local street lighting, and suggest that suburban areas could represent ecological traps for moth communities if they have insufficient resources to support moth survival and reproduction. Further research is now needed to determine whether street lighting is progressively damaging moth communities, and to understand whether these impacts could be mitigated through changes to street lighting regimes or through the provision of ecologically important habitats in urban landscapes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2058-5543 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1500  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: