toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rowse, E.G.; Harris, S.; Jones, G. url  doi
openurl 
  Title The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights Type Journal Article
  Year 2016 Publication PloS one Abbreviated Journal PLoS One  
  Volume 11 Issue 3 Pages e0150884  
  Keywords (up) Animals; bats; England; United Kingdom; low-pressure sodium; LPS; LED; LED lighting; ecology; urban ecology; Feeding Behavior  
  Abstract We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum 'white' light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these 'light-intolerant' bat species.  
  Address School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom; liz.rowse(at)bristol.ac.uk  
  Corporate Author Thesis  
  Publisher PLOS Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27008274 Approved no  
  Call Number IDA @ john @ Serial 1403  
Permanent link to this record
 

 
Author Yang, Y.-F.; Jiang, J.-S.; Pan, J.-M.; Ying, Y.-B.; Wang, X.-S.; Zhang, M.-L.; Lu, M.-S.; Chen, X.-H. url  doi
openurl 
  Title The relationship of spectral sensitivity with growth and reproductive response in avian breeders (Gallus gallus) Type Journal Article
  Year 2016 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 6 Issue Pages 19291  
  Keywords (up) Animals; birds; Gallus gallus; spectrum; *Reproduction; photobiology; biology  
  Abstract A previous study demonstrated that birds that are exposed to light at night develop advanced reproductive systems. However, spectrum might also affect the photoperiodic response of birds. The present study was aimed to investigate the effects of spectral composition on the growth and reproductive physiology of female breeders, using pure light-emitting diode spectra. A total of 1,000 newly hatched female avian breeders (Gallus gallus) were equally allocated to white-, red-, yellow-, green- and blue-light treated groups. We found that blue-light treated birds had a greater and faster weight gain than did red- and yellow-light treated birds (P = 0.02 and 0.05). The red light expedited the sexual maturation of the chicks, whose age at sexual maturity was 7 and 14 days earlier than that of the green- and blue-light treated birds, respectively. The accumulative egg production of the red-light treated birds was 9 and 8 eggs more than that of the blue- and green-light treated birds. The peak lay rate of the red-light treated groups was significantly greater than the blue-light treated birds (P = 0.028). In conclusion, exposure to short-wavelength light appears to promote growth of female breeder birds, whereas exposure to long-wavelength light appears to accelerate reproductive performance.  
  Address Zhejiang Guangda Breeding Poultry Corporation, Jiaxing 314423, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26765747 Approved no  
  Call Number IDA @ john @ Serial 1338  
Permanent link to this record
 

 
Author Rodríguez Martín, A.; Chiaradia, A.; Wasiak, P.; Renwick, L.; Dann, P. url  doi
openurl 
  Title Waddling on the Dark Side: Ambient Light Affects Attendance Behavior of Little Penguins Type Journal Article
  Year 2016 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume 0748730415626010 Issue Pages  
  Keywords (up) Animals; birds; penguins; attendance; little penguin; Eudyptula minor; Phillip Island; Australia; photobiology; seabirds  
  Abstract Visible light on Earth largely comes from the sun, including light reflected from the moon. Predation risk is strongly determined by light conditions, and some animals are nocturnal to reduce predation. Artificial lights and its consequent light pollution may disrupt this natural behavior. Here, we used 13 years of attendance data to study the effects of sun, moon, and artificial light on the attendance pattern of a nocturnal seabird, the little penguin Eudyptula minor at Phillip Island, Australia. The little penguin is the smallest and the only penguin species whose activity on land is strictly nocturnal. Automated monitoring systems recorded individually marked penguins every time they arrived (after sunset) at or departed (before sunrise) from 2 colonies under different lighting conditions: natural night skylight and artificial lights (around 3 lux) used to enhance penguin viewing for ecotourism around sunset. Sunlight had a strong effect on attendance as penguins arrived on average around 81 min after sunset and departed around 92 min before sunrise. The effect of moonlight was also strong, varying according to moon phase. Fewer penguins came ashore during full moon nights. Moon phase effect was stronger on departure than arrival times. Thus, during nights between full moon and last quarter, arrival times (after sunset) were delayed, even though moonlight levels were low, while departure times (before sunrise) were earlier, coinciding with high moonlight levels. Cyclic patterns of moon effect were slightly out of phase but significantly between 2 colonies, which could be due to site-specific differences or presence/absence of artificial lights. Moonlight could be overridden by artificial light at our artificially lit colony, but the similar amplitude of attendance patterns between colonies suggests that artificial light did not mask the moonlight effect. Further research is indeed necessary to understand how seabirds respond to the increasing artificial night light levels.  
  Address Department of Evolutionary Ecology, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio s/n, 41092 Seville, Spain; airamrguez(at)ebd.csic.es  
  Corporate Author Thesis  
  Publisher SAGE Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1345  
Permanent link to this record
 

 
Author Brady, A.; Willis, B.; Harder, L.; Vizel, P. url  doi
openurl 
  Title Lunar Phase Modulates Circadian Gene Expression Cycles in the Broadcast Spawning Coral Acropora millepora Type Journal Article
  Year 2016 Publication Biological Bulletin Abbreviated Journal Biol Bullet  
  Volume 230 Issue 2 Pages 130-142  
  Keywords (up) Animals; corals; Acropora millepora; lunar cycle; Circadian Rhythm; gene expression; moon  
  Abstract Many broadcast spawning corals in multiple reef regions release their gametes with incredible temporal precision just once per year, using the lunar cycle to set the night of spawning. Moonlight, rather than tides or other lunar-regulated processes, is thought to be the proximate factor responsible for linking the night of spawning to the phase of the Moon. We compared patterns of gene expression among colonies of the broadcast spawning coral Acropora millepora at different phases of the lunar cycle, and when they were maintained under one of three experimentally simulated lunar lighting treatments: i) lunar lighting conditions matching those on the reef, or lunar patterns mimicking either ii) constant full Moon conditions, or iii) constant new Moon conditions. Normal lunar illumination was found to shift both the level and timing of clock gene transcription cycles between new and full moons, with the peak hour of expression for a number of genes occurring earlier in the evening under a new Moon when compared to a full Moon. When the normal lunar cycle is replaced with nighttime patterns equivalent to either a full Moon or a new Moon every evening, the normal monthlong changes in the level of expression are destroyed for most genes. In combination, these results indicate that daily changes in moonlight that occur over the lunar cycle are essential for maintaining normal lunar periodicity of clock gene transcription, and this may play a role in regulating spawn timing. These data also show that low levels of light pollution may have an impact on coral biological clocks.  
  Address Department of Biological Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; pvize(at)ucalgary.ca  
  Corporate Author Thesis  
  Publisher Marine Biological Laboratory Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1476  
Permanent link to this record
 

 
Author Lucas, M.A.; Chahl, J.S. url  doi
openurl 
  Title Challenges for biomimetic night time sky polarization navigation Type Conference Article
  Year 2016 Publication Proceedings of the SPIE Abbreviated Journal Proc SPIE  
  Volume 9797 Issue Pages  
  Keywords (up) Animals; detection of light; biology; polarization; navigation  
  Abstract Studies on some species of insects have shown them to use the polarization pattern cast by the moon in the night sky to control heading. Additional heading cues are of value to autonomous systems, since the earth’s magnetic field is not uniform, often not available and is substantially modified by local phenomena. In addition to the required low-light sensitivity of a night time polarization compass, additional complexities caused by the relative intensity of terrestrial sources must be overcome. We will show that the end result will tend to be a less reliable compass than the equivalent day time polarization device.  
  Address Univ. of South Australia, Australia  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1430  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: