toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Smolka, J.; Baird, E.; el Jundi, B.; Reber, T.; Byrne, M.J.; Dacke, M. url  doi
openurl 
  Title Night sky orientation with diurnal and nocturnal eyes: dim-light adaptations are critical when the moon is out of sight Type Journal Article
  Year 2016 Publication Animal Behaviour Abbreviated Journal Animal Behaviour  
  Volume 111 Issue Pages 127-146  
  Keywords (up) Animals; dung beetle; insect; Milky Way; nocturnal adaptation; polarized moonlight; sky compass; straight-line orientation; vision; Scarabaeus; Scarabaeus lamarcki; Scarabaeus satyrus  
  Abstract The visual systems of many animals feature energetically costly specializations to enable them to function in dim light. It is often unclear, however, how large the behavioural benefit of these specializations is, because a direct comparison in a behaviourally relevant task between closely related day- and night-active species is not usually possible. Here we compared the orientation performance of diurnal and nocturnal species of dung beetles, Scarabaeus (Kheper) lamarcki and Scarabaeus satyrus, respectively, attempting to roll dung balls along straight paths both during the day and at night. Using video tracking, we quantified the straightness of paths and the repeatability of roll bearings as beetles exited a flat arena in their natural habitat or under controlled conditions indoors. Both species oriented equally well when either the moon or an artificial point light source was available, but when the view of the moon was blocked and only wide-field cues such as the lunar polarization pattern or the stars were available for orientation, nocturnal beetles were oriented substantially better. We found no evidence that ball-rolling speed changed with light level, which suggests little or no temporal summation in the visual system. Finally, we found that both diurnal and nocturnal beetles tended to choose bearings that led them towards a bright light source, but away from a dim one. Our results show that even diurnal insects, at least those with superposition eyes, could orient by the light of the moon, but that dim-light adaptations are needed for precise orientation when the moon is not visible.  
  Address Department of Biology, Lund University, Biology Building, Sölvegatan 35, 223 62 Lund, Sweden; jochen.smolka(at)biol.lu.se  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-3472 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1317  
Permanent link to this record
 

 
Author Hüppop, O.; Hüppop, K.; Dierschke, J.; Hill, R. url  doi
openurl 
  Title Bird collisions at an offshore platform in the North Sea Type Journal Article
  Year 2016 Publication Bird Study Abbreviated Journal Bird Study  
  Volume 63 Issue 1 Pages 73-82  
  Keywords (up) Animals; Ecology  
  Abstract Capsule Collisions with offshore structures in the North Sea could account for the mortality of hundreds of thousands of nocturnally migrating birds.

Aims To assess, for the first time, the circumstances of mass fatalities at an offshore structure, including the species involved, their numbers, ages, body conditions and injuries.

Methods At an unmanned tall offshore research platform in the southeastern North Sea, bird corpses were collected on 160 visiting days from October 2003 to December 2007. Corpses were identified to species and kinds of injury, ages, and fat and muscle scores were determined. Nocturnal bird calls were recorded, identified to species and quantified. Local and large-scale weather parameters were also considered.

Results A total of 767 birds of 34 species, mainly thrushes, European Starlings and other passerines, were found at 45 visits. Most carcasses were in good body condition and young birds were not more affected than adults. Three quarters of 563 examined individuals had collision induced injuries. Birds in poor body condition were less likely to be collision victims than those in good condition. Mass collision events at the illuminated offshore structure coincided with increasingly adverse weather conditions and an increasing call intensity of nocturnal birds.

Conclusions Assuming an average of 150 dead birds per year at this single offshore structure and additionally assuming that a considerable proportion of the corpses were not found, we estimate that mortality at the 1000 + human structures in the North Sea could reach hundreds of thousands of birds. Since offshore industrialization will progress and collision numbers at offshore turbines will consequently increase considerably, we recommend reinforced measures to reduce bird strikes at offshore structures, especially in the light of substantial declines in some migrant species.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3657 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1377  
Permanent link to this record
 

 
Author Justice, M.J.; Justice, T.C. url  doi
openurl 
  Title Attraction of Insects to Incandescent, Compact Fluorescent, Halogen, and Led Lamps in a Light Trap: Implications for Light Pollution and Urban Ecologies Type Journal Article
  Year 2016 Publication Entomological News Abbreviated Journal Entomological News  
  Volume 125 Issue 5 Pages 315-326  
  Keywords (up) Animals; Ecology  
  Abstract The widespread use of electric lamps has created “ecological light pollution” and “artificial light ecology.” Given the important role of insects in ecosystems, how they are affected by light pollution deserves attention. Lamps designed for lighting small areas around residences are used in abundance, but studies specifically examining them are scarce. This study used a light trap to capture insects for 60 summer nights in a suburban town in Virginia, USA. During each night of trapping, one of five different light bulbs was used in the trap (incandescent, compact fluorescent, halogen, warm color temperature LED, or cool color temperature LED). The data suggest that fewer insects overall are attracted to bulbs using LED technology than bulbs using incandescent technology. This difference was also observed in the orders Lepidoptera and Diptera. These results support the use of LED bulbs to reduce the insect attraction and mortality caused by the use of artificial lights at night.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-872X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1419  
Permanent link to this record
 

 
Author Macgregor, C.J.; Evans, D.M.; Fox, R.; Pocock, M.J.O. url  doi
openurl 
  Title The dark side of street lighting: impacts on moths and evidence for the disruption of nocturnal pollen transport Type Journal Article
  Year 2016 Publication Global Change Biology Abbreviated Journal Glob Chang Biol  
  Volume 23 Issue 2 Pages 697-707  
  Keywords (up) Animals; Ecology  
  Abstract Among drivers of environmental change, artificial light at night is relatively poorly understood, yet is increasing on a global scale. The community-level effects of existing street lights on moths and their biotic interactions have not previously been studied. Using a combination of sampling methods at matched-pairs of lit and unlit sites, we found significant effects of street lighting: moth abundance at ground level was halved at lit sites, species richness was >25% lower, and flight activity at the level of the light was 70% greater. Furthermore, we found that 23% of moths carried pollen of at least 28 plant species and that there was a consequent overall reduction in pollen transport at lit sites. These findings support the disruptive impact of lights on moth activity, which is one proposed mechanism driving moth declines, and suggest that street lighting potentially impacts upon pollination by nocturnal invertebrates. We highlight the importance of considering both direct and cascading impacts of artificial light.  
  Address Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27251575 Approved no  
  Call Number LoNNe @ kyba @ Serial 1520  
Permanent link to this record
 

 
Author Firebaugh, A.; Haynes, K.J. url  doi
openurl 
  Title Experimental tests of light-pollution impacts on nocturnal insect courtship and dispersal Type Journal Article
  Year 2016 Publication Oecologia Abbreviated Journal Oecologia  
  Volume Issue Pages  
  Keywords (up) Animals; Ecology  
  Abstract Though a number of effects of artificial light pollution on behavior and physiology have been described, there is little understanding of their consequences for the growth and distribution of populations. Here, we document impacts of light pollution on aspects of firefly population ecology and underlying mating behaviors. Many firefly species have a unique communication system whereby bioluminescent flashes are used in courtship displays to find and attract mates. We performed a series of manipulative field experiments in which we quantified the effects of adding artificial nighttime lighting on abundances and total flashing activity of fireflies, courtship behaviors and mating between tethered females and free-flying males, and dispersal distances of marked individuals. We show that light pollution reduces flashing activities in a dark-active firefly species (Photuris versicolor) by 69.69 % and courtship behavior and mating success in a twilight-active species (Photinus pyralis). Though courtship behavior and mating success of Photinus pyralis was reduced by light pollution, we found no effects of light pollution on male dispersal in this species. Our findings suggest that light pollution is likely to adversely impact firefly populations, and contribute to wider discussions about the ecological consequences of sensory pollution.  
  Address Blandy Experimental Farm, University of Virginia, 400 Blandy Farm Lane, Boyce, VA, 22620, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0029-8549 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27646716 Approved no  
  Call Number LoNNe @ kyba @ Serial 1526  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: