toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bolton, D.; Mayer-Pinto, M.; Clark, G.F.; Dafforn, K.A.; Brassil, W.A.; Becker, A.; Johnston, E.L. url  doi
openurl 
  Title Coastal urban lighting has ecological consequences for multiple trophic levels under the sea Type Journal Article
  Year 2016 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ  
  Volume 576 Issue Pages 1-9  
  Keywords (up) Animals; Ecology  
  Abstract Urban land and seascapes are increasingly exposed to artificial lighting at night (ALAN), which is a significant source of light pollution. A broad range of ecological effects are associated with ALAN, but the changes to ecological processes remain largely unstudied. Predation is a key ecological process that structures assemblages and responds to natural cycles of light and dark. We investigated the effect of ALAN on fish predatory behaviour, and sessile invertebrate prey assemblages. Over 21days fish and sessile assemblages were exposed to 3 light treatments (Day, Night and ALAN). An array of LED spotlights was installed under a wharf to create the ALAN treatments. We used GoPro cameras to film during the day and ALAN treatments, and a Dual frequency IDentification SONar (DIDSON) to film during the night treatments. Fish were most abundant during unlit nights, but were also relatively sedentary. Predatory behaviour was greatest during the day and under ALAN than at night, suggesting that fish are using structures for non-feeding purposes (e.g. shelter) at night, but artificial light dramatically increases their predatory behaviour. Altered predator behaviour corresponded with structural changes to sessile prey assemblages among the experimental lighting treatments. We demonstrate the direct effects of artificial lighting on fish behaviour and the concomitant indirect effects on sessile assemblage structure. Current and future projected use of artificial lights has the potential to significantly affect predator-prey interactions in marine systems by altering habitat use for both predators and prey. However, developments in lighting technology are a promising avenue for mitigation. This is among the first empirical evidence from the marine system on how ALAN can directly alter predation, a fundamental ecosystem process, and have indirect trophic consequences.  
  Address Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia; Sydney Institute of Marine Sciences, Mosman, NSW 2088, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27780095 Approved no  
  Call Number LoNNe @ kyba @ Serial 1548  
Permanent link to this record
 

 
Author Price, B.; Baker, E. url  doi
openurl 
  Title NightLife: A cheap, robust, LED based light trap for collecting aquatic insects in remote areas Type Journal Article
  Year 2016 Publication Biodiversity Data Journal Abbreviated Journal Bdj  
  Volume 4 Issue Pages e7648  
  Keywords (up) Animals; Ecology; Lighting  
  Abstract Background

There are approximately one hundred thousand aquatic insect species currently known to science and this figure is likely a significant underestimation. The ecology of aquatic insect groups has been studied due to their role as bioindicators of water quality and in the case of Diptera, their role as vectors of disease. Light trapping targets emergent adults, using mercury vapour bulbs or actinic fluorescent tubes, however these light sources are unsuitable for sampling remote regions due to their power requirements, which limit their mobility. Most insects studied have three types of photoreceptors corresponding to UV, blue and green light.

New information

We describe the NightLife: a cheap, robust, portable, LED based light source which targets insect trichromatic vision, is capable of autonomous operation and is powered by a single AA battery. Field trials show that the NightLife is capable of collecting sufficient samples of 12 insect orders, including all aquatic orders commonly collected by traditional light trapping and compares favourably with actinic fluorescent tubes and white LEDs. Future development in LED technology will likely result in LEDs replacing traditional light sources for collecting insects more widely.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1314-2836 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1398  
Permanent link to this record
 

 
Author Hall, A.S. url  doi
openurl 
  Title Acute Artificial Light Diminishes Central Texas Anuran Calling Behavior Type Journal Article
  Year 2016 Publication The American Midland Naturalist Abbreviated Journal Amer. Midland Naturalist  
  Volume 175 Issue 2 Pages 183-193  
  Keywords (up) Animals; frogs; toads; amphibians; anurans; ecology; wildlife; Texas  
  Abstract Male anuran (frog and toad) advertisement calls associate with fitness and can respond to environmental cues such as rain and air temperature. Moonlight is thought to generally decrease call behaviors – perhaps as a response to increased perceived risk of predation – and this study sought to determine if artificial lighting produces a similar pattern. Using a handheld spotlight, light was experimentally introduced to natural anuran communities in ponds and streams. Custom call surveys where then used to measure anuran calls in paired unlit and lit conditions at six locations in central Texas. Among seven species heard, the number of frogs calling and call index declined in response to the acute light input. Local weather conditions could not explain differences between numbers of frogs calling between species, sites, survey order, or lighting order suggesting the main effect on number calling was light treatment. It appears acute artificial light alone can change calling behavior within several species in natural, mixed species assemblages.  
  Address Department of Biology, The University of Texas at Arlington, Arlington, Texas 76019; allopatry(at)gmail.com  
  Corporate Author Thesis  
  Publisher BioOne Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-0031 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1455  
Permanent link to this record
 

 
Author Gao, X.; Li, X.; Zhang, M.; Chi, L.; Song, C.; Liu, Y. url  doi
openurl 
  Title Effects of LED light quality on the growth, survival and metamorphosis ofHaliotis discus hannaiIno larvae Type Journal Article
  Year 2016 Publication Aquaculture Research Abbreviated Journal Aquac Res  
  Volume 47 Issue 12 Pages 3705–3717  
  Keywords (up) Animals; Haliotis discus hannai Ino; larva; LED light quality; initial stage of lighting; embryonic development; abalone; photobiology  
  Abstract Light is a key environmental factor influencing the growth, development and survival of aquatic organisms. We examined the effects of different light qualities (red, orange, white, blue, green or no light) and developmental stage at initial lighting [fertilized egg (FE), trochophore larva (TL), or eye-spot larva (EL)] on the growth, development, and survival of larvae of the Pacific abalone Haliotis discus hannai Ino. Larva-hatching success was significantly higher under blue, green, or no light compared with red, orange or white light (P < 0.05). Larval abnormalities were significantly increased under red, orange or white light compared with all other light qualities (P < 0.05). The incidence of metamorphosis in larvae illuminated from the TL stage was significantly higher under blue compared with other light qualities. Irrespective of the stage at initial illumination, the incidence of metamorphosis was lower in larvae cultured under red, orange or no light compared with other light qualities, but the differences were not significant (P > 0.05). Juvenile survival was significantly higher under blue or green compared with other light qualities (P < 0.05), with no significant effect of stage at initial illumination (P > 0.05). Larval size at completion of the shell was unaffected by stage at initial illumination, but was greater under blue or green light, while size at metamorphosis was greatest following illumination with blue or green light since the TL or EL stage (P < 0.05). Metamorphosis time was shortest with blue or green light and in cultures illuminated from the FE or TL stage (P < 0.05). Larval development from the FE to formation of the fourth tubule on the cephalic tentacles was fastest in larvae exposed since the FE or TL stage to blue or green light, compared with other light qualities (P < 0.05). However, there was no difference in terms of the rate of development from the FE to the TL stage between cultures lit or unlit since the FE egg stage (P > 0.05). These results suggest that a blue or green light source applied from the TL stage can increase the hatching and yield of H. discus hannai Ino, with important implications for the development of the aquaculture industry.  
  Address Research and Development Center of Marine Biotechnology, Institute of Oceanology, Chinese Academy of Science, 7 Nanhai Road, Qingdao 266071, Shandong Province, China; 18354292961(at)163.com.  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1355557X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1340  
Permanent link to this record
 

 
Author Rund, S.; O'Donnell, A.; Gentile, J.; Reece, S. url  doi
openurl 
  Title Daily Rhythms in Mosquitoes and Their Consequences for Malaria Transmission Type Journal Article
  Year 2016 Publication Insects Abbreviated Journal Insects  
  Volume 7 Issue 2 Pages 14  
  Keywords (up) Animals; Human Health  
  Abstract The 24-h day involves cycles in environmental factors that impact organismal fitness. This is thought to select for organisms to regulate their temporal biology accordingly, through circadian and diel rhythms. In addition to rhythms in abiotic factors (such as light and temperature), biotic factors, including ecological interactions, also follow daily cycles. How daily rhythms shape, and are shaped by, interactions between organisms is poorly understood. Here, we review an emerging area, namely the causes and consequences of daily rhythms in the interactions between vectors, their hosts and the parasites they transmit. We focus on mosquitoes, malaria parasites and vertebrate hosts, because this system offers the opportunity to integrate from genetic and molecular mechanisms to population dynamics and because disrupting rhythms offers a novel avenue for disease control.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2075-4450 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1421  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: