toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yang, Y.; Yu, Y.; Pan, J.; Ying, Y.; Zhou, H. url  doi
openurl 
  Title A new method to manipulate broiler chicken growth and metabolism: Response to mixed LED light system Type Journal Article
  Year 2016 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 6 Issue Pages 25972  
  Keywords Animals  
  Abstract Present study introduced a new method to manipulate broiler chicken growth and metabolism by mixing the growth-advantage LED. We found that the green/blue LED mixed light system (G-B and G x B) have the similar stimulatory effect on chick body weight with single green light and single blue light (G and B), compared with normal artificial light (P = 0.028). Moreover, the percentage of carcass was significantly greater in the mixed light (G x B) when compared with the single light (P = 0.003). Synchronized with body weight, the mixed light (G-B and G x B) had a significant improved influence on the feed conversion of birds compared with normal light (P = 0.002). A significant improvement in feed conversion were found in mixed light (G x B) compared with single LED light (P = 0.037). G group resulted in a greater high-density lipoprotein cholesterol level than B group (P = 0.002), whereas B group resulted in a greater low-density lipoprotein cholesterol level than G group (P = 0.017). The mixed light significantly increased the birds' glucose level in comparison with the single light (P = 0.003). This study might establish an effective strategy for maximizing growth of chickens by mixed LED technology.  
  Address Department of Instrument Science and Engineering, Zhejiang University, Hangzhou 310058, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:27170597; PMCID:PMC4864324 Approved no  
  Call Number LoNNe @ kyba @ Serial 1502  
Permanent link to this record
 

 
Author Degen, T.; Mitesser, O.; Perkin, E.K.; Weiss, N.-S.; Oehlert, M.; Mattig, E.; Hölker, F. url  doi
openurl 
  Title Street lighting: sex-independent impacts on moth movement Type Journal Article
  Year 2016 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol  
  Volume Issue Pages  
  Keywords Biology  
  Abstract 1.Artificial lights have become an integral and welcome part of our urban and peri-urban environments. However, recent research has highlighted the potentially negative ecological consequences of ubiquitous artificial light. In particular, insects, especially moths, are expected to be negatively impacted by the presence of artificial lights. Previous research with light traps has shown a male-biased attraction to light in moths. 2.In this study, we sought to determine if street lights could limit moth dispersal and if there was any sex bias in attraction to light. More specifically, we aimed to determine sex specific attraction radii for moths to street lights. 3.We tested these hypotheses by collecting moths for two years at an experimental setup. To estimate the attraction radii we developed a Markov model and related it to the acquired data. 4.Utilizing multinomial statistics, we found that attraction rates to lights in the middle of the matrix were substantially lower than predicted by the null hypothesis of equal attraction level (0.44 times). With the Markov model, we estimated that a corner-light was 2.77 times more attractive than a wing-light with an equivalent attraction radius of c. 23m around each light. We found neither sexual differences in the attraction rate nor in the attraction radius of males and females. Since we captured three times more males than females, we conclude that sex ratios are representative of operational sex ratios or of different flight activities. 5.These results provide evidence for street lights to limit moth dispersal, and that they seem to act equally on male and female moths. Consequently, public lighting might divide a suitable landscape into many small habitats. Therefore, it is reasonable to assume i) that public lighting near hedges and bushes or field margins reduces the quality of these important habitat structures, and ii) that public lighting near important habitat structures but not interfering with local movement may affect moth movement between patches. This article is protected by copyright. All rights reserved.  
  Address Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8790 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:27146262 Approved no  
  Call Number LoNNe @ kyba @ Serial 1439  
Permanent link to this record
 

 
Author Xu, M.; He, C.; Liu, Z.; Dou, Y. url  doi
openurl 
  Title How Did Urban Land Expand in China between 1992 and 2015? A Multi-Scale Landscape Analysis Type Journal Article
  Year 2016 Publication PloS one Abbreviated Journal PLoS One  
  Volume 11 Issue 5 Pages e0154839  
  Keywords remote sensing  
  Abstract Effective and timely quantification of the spatiotemporal pattern of urban expansion in China is important for the assessment of its environmental effects. However, the dynamics of the most recent urban expansions in China since 2012 have not yet been adequately explained due to a lack of current information. In this paper, our objective was to quantify spatiotemporal patterns of urban expansion in China between 1992 and 2015. First, we extracted information on urban expansion in China between 1992 and 2015 by integrating nighttime light data, vegetation index data, and land surface temperature data. Then we analyzed the spatiotemporal patterns of urban expansion at the national and regional scales, as well as at that of urban agglomerations. We found that China experienced a rapid and large-scale process of urban expansion between 1992 and 2015, with urban land increasing from 1.22 x 104 km2 to 7.29 x 104 km2, increasing in size nearly fivefold and with an average annual growth rate of 8.10%, almost 2.5 times as rapid as the global average. We also found that urban land in China expanded mainly by occupying 3.31 x 104 km2 of cropland, which comprised 54.67% of the total area of expanded urban land. Among the three modes of growth-infilling, edge expansion, and leapfrog-edge expansion was the main cause of cropland loss. Cropland loss resulting from edge expansion of urban land totalled 2.51 x 104 km2, accounting for over 75% of total cropland loss. We suggest that effective future management with respect to edge expansion of urban land is needed to protect cropland in China.  
  Address Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:27144589; PMCID:PMC4856333 Approved no  
  Call Number LoNNe @ kyba @ Serial 1438  
Permanent link to this record
 

 
Author Yuan, D.; Collage, R.D.; Huang, H.; Zhang, X.; Kautza, B.C.; Lewis, A.J.; Zuckerbraun, B.S.; Tsung, A.; Angus, D.C.; Rosengart, M.R. url  doi
openurl 
  Title Blue light reduces organ injury from ischemia and reperfusion Type Journal Article
  Year 2016 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A  
  Volume 113 Issue 19 Pages 5239-5244  
  Keywords Biology  
  Abstract Evidence suggests that light and circadian rhythms profoundly influence the physiologic capacity with which an organism responds to stress. However, the ramifications of light spectrum on the course of critical illness remain to be determined. Here, we show that acute exposure to bright blue spectrum light reduces organ injury by comparison with bright red spectrum or ambient white fluorescent light in two murine models of sterile insult: warm liver ischemia/reperfusion (I/R) and unilateral renal I/R. Exposure to bright blue light before I/R reduced hepatocellular injury and necrosis and reduced acute kidney injury and necrosis. In both models, blue light reduced neutrophil influx, as evidenced by reduced myeloperoxidase (MPO) within each organ, and reduced the release of high-mobility group box 1 (HMGB1), a neutrophil chemotactant and key mediator in the pathogenesis of I/R injury. The protective mechanism appeared to involve an optic pathway and was mediated, in part, by a sympathetic (beta3 adrenergic) pathway that functioned independent of significant alterations in melatonin or corticosterone concentrations to regulate neutrophil recruitment. These data suggest that modifying the spectrum of light may offer therapeutic utility in sterile forms of cellular injury.  
  Address Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261 rosengartmr@upmc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:27114521 Approved no  
  Call Number LoNNe @ kyba @ Serial 1443  
Permanent link to this record
 

 
Author Yang, Y.; Yu, Y.; Yang, B.; Zhou, H.; Pan, J. url  doi
openurl 
  Title Physiological responses to daily light exposure Type Journal Article
  Year 2016 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 6 Issue Pages 24808  
  Keywords Animals  
  Abstract Long daylength artificial light exposure associates with disorders, and a potential physiological mechanism has been proposed. However, previous studies have examined no more than three artificial light treatments and limited metabolic parameters, which have been insufficient to demonstrate mechanical responses. Here, comprehensive physiological response curves were established and the physiological mechanism was strengthened. Chicks were illuminated for 12, 14, 16, 18, 20, or 22 h periods each day. A quadratic relationship between abdominal adipose weight (AAW) and light period suggested that long-term or short-term light exposure could decrease the amount of AAW. Quantitative relationships between physiological parameters and daily light period were also established in this study. The relationships between triglycerides (TG), cholesterol (TC), glucose (GLU), phosphorus (P) levels and daily light period could be described by quadratic regression models. TG levels, AAW, and BW positively correlated with each other, suggesting long-term light exposure significantly increased AAW by increasing TG thus resulting in greater BW. A positive correlation between blood triiodothyronine (T3) levels and BW suggested that daily long-term light exposure increased BW by thyroid hormone secretion. Though the molecular pathway remains unknown, these results suggest a comprehensive physiological mechanism through which light exposure affects growth.  
  Address College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:27098210 Approved no  
  Call Number LoNNe @ kyba @ Serial 1424  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: