toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wakefield, A.; Broyles, M.; Stone, E.L.; Jones, G.; Harris, S. url  doi
openurl 
  Title Experimentally comparing the attractiveness of domestic lights to insects: Do LEDs attract fewer insects than conventional light types? Type Journal Article
  Year 2016 Publication (up) Ecology and Evolution Abbreviated Journal Ecol Evol  
  Volume 6 Issue 22 Pages 8028-8036  
  Keywords ecology; Lighting  
  Abstract LED lighting is predicted to constitute 70% of the outdoor and residential lighting markets by 2020. While the use of LEDs promotes energy and cost savings relative to traditional lighting technologies, little is known about the effects these broad-spectrum “white” lights will have on wildlife, human health, animal welfare, and disease transmission. We conducted field experiments to compare the relative attractiveness of four commercially available “domestic” lights, one traditional (tungsten filament) and three modern (compact fluorescent, “cool-white” LED and “warm-white” LED), to aerial insects, particularly Diptera. We found that LEDs attracted significantly fewer insects than other light sources, but found no significant difference in attraction between the “cool-” and “warm-white” LEDs. Fewer flies were attracted to LEDs than alternate light sources, including fewer Culicoides midges (Diptera: Ceratopogonidae). Use of LEDs has the potential to mitigate disturbances to wildlife and occurrences of insect-borne diseases relative to competing lighting technologies. However, we discuss the risks associated with broad-spectrum lighting and net increases in lighting resulting from reduced costs of LED technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1541  
Permanent link to this record
 

 
Author Ball, L.J.; Palesh, O.; Kriegsfeld, L.J. url  doi
openurl 
  Title The Pathophysiologic Role of Disrupted Circadian and Neuroendocrine Rhythms in Breast Carcinogenesis Type Journal Article
  Year 2016 Publication (up) Endocrine Reviews Abbreviated Journal Endocrine Reviews  
  Volume Issue Pages er.2015-1133  
  Keywords Human Health  
  Abstract Most physiological processes in the brain and body exhibit daily (circadian) rhythms coordinated by an endogenous master clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus that are essential for normal health and functioning. Exposure to sunlight during the day and darkness at night optimally entrains biological rhythms to promote homeostasis and human health. Unfortunately, a major consequence of the modern lifestyle is increased exposure to sun-free environments during the day and artificial lighting at night. Additionally, behavioral disruptions to circadian rhythms (i.e., repeated transmeridian flights, night or rotating shift work, or sleep disturbances) have a profound influence on health and have been linked to a number of pathological conditions, including endocrine-dependent cancers. Specifically, night shift work has been identified as a significant risk factor for breast cancer in industrialized countries. Several mechanisms have been proposed by which shift-work-induced circadian disruptions promote cancer. In this review, we examine the importance of the brain-body link through which circadian disruptions contribute to endocrine-dependent diseases, including breast carcinogenesis, by negatively impacting neuroendocrine and neuroimmune cells and consider preventive measures directed at maximizing circadian health.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-769X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1496  
Permanent link to this record
 

 
Author Mendez, N.; Halabi, D.; Spichiger, C.; Salazar, E.R.; Vergara, K.; Alonso-Vasquez, P.; Carmona, P.; Sarmiento, J.M.; Richter, H.G.; Seron-Ferre, M.; Torres-Farfan, C. url  doi
openurl 
  Title Gestational Chronodisruption Impairs Circadian Physiology in Rat Male Offspring, Increasing the Risk of Chronic Disease Type Journal Article
  Year 2016 Publication (up) Endocrinology Abbreviated Journal Endocrinology  
  Volume 157 Issue 12 Pages 4654-4668  
  Keywords Animals  
  Abstract Chronic exposure to light at night, as in shift work, alters biological clocks (chronodisruption), impacting negatively pregnancy outcome in human. Actually, the interaction of maternal and fetal circadian systems could be a key factor determining a fitting health in adult. We propose that chronic photoperiod shifts (CPS) during pregnancy, alter maternal circadian rhythms, and impair circadian physiology in the adult offspring, increasing health risks. Pregnant rats were exposed to normal photoperiod (12h-light/12h-dark) or to CSP until 85 gestation. The effects of gestational CPS were evaluated on the mother and adult offspring. In the mother we measured rhythms of heart-rate, body temperature and activity through gestation, and daily rhythms of plasma variables: melatonin, corticosterone, aldosterone and markers of renal function; at 18 days of gestation. In adult offspring, we measured rhythms of clock gene expression in the suprachiasmatic nucleus (SCN), locomotor activity, body temperature, heart rate, blood pressure, plasma variables, glucose tolerance and corticosterone response to adrenocorticotropic hormone (ACTH). CPS altered all maternal circadian rhythms; lengthened gestation and increased newborn weight. The adult CPS offspring presented normal rhythms of clock gene expression in the SCN, locomotor activity and body temperature. However, the daily rhythm of plasma melatonin was absent, and corticosterone, aldosterone, renal markers, blood pressure and heart-rate rhythms were altered. Moreover, CPS offspring presented decreased glucose tolerance and abnormal corticosterone response to ACTH. Altogether, these data shows that gestational CPS induced long-term effects on the offspring circadian system, wherein a normal SCN coexists with altered endocrine, cardiovascular and metabolic function.  
  Address Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology and Pathology and  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-7227 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27802074 Approved no  
  Call Number LoNNe @ kyba @ Serial 1550  
Permanent link to this record
 

 
Author Xie, Y.; Weng, Q. url  doi
openurl 
  Title Detecting urban-scale dynamics of electricity consumption at Chinese cities using time-series DMSP-OLS (Defense Meteorological Satellite Program-Operational Linescan System) nighttime light imageries Type Journal Article
  Year 2016 Publication (up) Energy Abbreviated Journal Energy  
  Volume 100 Issue Pages 177-189  
  Keywords Remote Sensing  
  Abstract A better understanding of the spatiotemporal pattern of energy consumption at the urban scale is significant in the interactions between economic activities and environment. This study assessed the spatiotemporal dynamics of EC (electricity consumption) in UC (urban cores) and SR (suburban regions) in China from 2000 to 2012 by using remotely sensed NTL (nighttime light) imagery. Firstly, UC and SR were extracted using a threshold technique. Next, provincial level model was calibrated yearly by using Enhanced Vegetation Index and population-adjusted NTL data as independent variables. These models were then applied for pixel-based estimation to obtain time-series EC data sets. Finally, the spatiotemporal pattern of EC in both UC and SR were explored. The results indicated that the proportion of EC in urban areas rose from 50.6% to 71.32%, with a growing trend of spatial autocorrelation. Cities with high urban EC were either located in the coastal region or belonged to provincial capitals. These cities experienced a moderate to a rapid growth of EC in both UC and SR, while a slow growth was detected for the majority of western and northeastern cities. The findings suggested that EC in SR was more crucial for sustainable energy development in China.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-5442 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2489  
Permanent link to this record
 

 
Author Rossi, F.; Bonamente, E.; Nicolini, A.; Anderini, E.; Cotana, F. url  doi
openurl 
  Title A carbon footprint and energy consumption assessment methodology for UHI-affected lighting systems in built areas Type Journal Article
  Year 2016 Publication (up) Energy and Buildings Abbreviated Journal Energy and Buildings  
  Volume 114 Issue Pages 96-103  
  Keywords Remote Sensing; Energy  
  Abstract This paper investigates the effects of urban heat island (UHI) on outdoor lighting systems in terms of GHG emissions: a novel methodology is proposed to assess the carbon footprint (CF) change of lighting services in built areas caused by UHI-induced ΔT with particular focus on the evaluation of the energy consumption. The methodology can be applied also to other activities affected by the UHI, such as HVAC and transport systems. In particular, ΔCF was introduced by a two-fold approach: the quantification of the CF change due to UHI (as difference between CF in an UHI-affected case and CF for an UHI-less case) and the CF change produced by a 1 °C temperature change. A focus on LED lamps was developed: the lifetime of LEDs exponentially decreases with increasing temperature and the luminous flux exponentially decays with operation time. UHI (i.e. the increase in ambient temperature) affects the lifetime and the luminous flux of lamps producing higher energy consumption and higher replacement rates. Results showed that a positive ΔT due to UHI produces a positive ΔCF, which also becomes economically relevant in long-term scenarios. A case study was analyzed by applying the proposed methodology to Rome outdoor public lighting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-7788 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2483  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: