toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Schroer, S.; Hölker, F. url  doi
isbn  openurl
  Title Impact of Lighting on Flora and Fauna Type Book Chapter
  Year 2016 Publication (up) Handbook of Advanced Lighting Technology Abbreviated Journal  
  Volume Issue Pages 1-33  
  Keywords Ecology; Lighting; Artificial light at night; ALAN; Plants; Animals; review  
  Abstract Technology, especially artificial light at night (ALAN), often has unexpected impacts on the environment. This chapter addresses both the perception of light by various organisms and the impact of ALAN on flora and fauna. The responses to ALAN are subdivided into the effects of light intensity, color spectra, and duration and timing of illumination. The ways organisms perceive light can be as variable as the habitats they live in. ALAN often interferes with natural light information. It is rarely neutral and has significant impacts beyond human perception. For example, UV light reflection of generative plant parts or the direction of light is used by many organisms as information for foraging, finding spawning sites, or communication. Contemporary outdoor lighting often lacks sustainable planning, even though the protection of species, habitat, and human well-being could be improved by adopting simple technical measures. The increasing use of ALAN with high intensities in the blue part of the spectrum, e.g., fluorescent light and LEDs, is discussed as a critical trend. Blue light is a major circadian signal in higher vertebrates and can substantially impact the orientation of organisms such as numerous insect species. A better understanding of how various types and sources of artificial light, and how organisms perceive ALAN, will be an important step towards more sustainable lighting. Such knowledge is the basis for sustainable lighting planning and the development of solutions to protect biodiversity from the effects of outdoor lighting. Maps that describe the rapid changes in ALAN are urgently needed. In addition, measures are required to reduce the increasing use and intensity of ALAN in more remote areas as signaling thresholds in flora and fauna at night are often close to moonlight intensity and far below streetlight levels.  
  Address Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany; schroer(at)igb-berlin.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-00295-8 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1470  
Permanent link to this record
 

 
Author Son, K.-H.; Jeon, Y.-M.; Oh, M.-M. url  doi
openurl 
  Title Application of supplementary white and pulsed light-emitting diodes to lettuce grown in a plant factory with artificial lighting Type Journal Article
  Year 2016 Publication (up) Horticulture, Environment, and Biotechnology Abbreviated Journal Hortic. Environ. Biotechnol.  
  Volume 57 Issue 6 Pages 560-572  
  Keywords Plants  
  Abstract Light-emitting diodes (LEDs) are currently undergoing rapid development as plant growth light sources in a plant factory with artificial lighting (PFAL). However, little is known about the effects of supplementary light and pulsed LEDs on plant growth, bioactive compound productions, and energy efficiency in lettuce. In this study, we aimed to determine the effects of supplementary white LEDs (study I) and pulsed LEDs (study II) on red leaf lettuce (Lactuca sativa L. ‘Sunmang’). In study I, six LED sources were used to determine the effects of supplementary white LEDs (RGB 7:1:1, 7:1:2, RWB 7:1:2, 7:2:1, 8:1:1, 8:2:0 [based on chip number] on lettuce). Fluorescent lamps were used as the control. In study II, pulsed RWB 7:2:1 LED treatments (30, 10, 1 kHz with a 50 or 75% duty ratio) were applied to lettuce. In study I, the application of red and blue fractions improved plant growth characteristics and the accumulation of antioxidant phenolic compounds, respectively. In addition, the application of green light increased plant growth, including the fresh and dry weights of shoots and roots, as well as leaf area. However, the substitution of green LEDs with white LEDs induced approximately 3.4-times higher light and energy use efficiency. In study II, the growth characteristics and photosynthesis of lettuce were affected by various combinations of duty ratio and frequency. In particular, biomass under a 1 kHz 75% duty ratio of pulsed LEDs was not significantly different from that of the control (continuous LEDs). Moreover, no significant difference in leaf photosynthetic rate was observed between any pulsed LED treatment utilizing a 75% duty ratio versus continuous LEDs. However, some pulsed LED treatments may potentially improve light and energy use efficiency compared to continuous LEDs. These results suggest that the fraction of red, blue, and green wavelengths of LEDs is an important factor for plant growth and the biosynthesis of bioactive compounds in lettuce and that supplementary white LEDs (based on a combination of red and blue LEDs) might be more suitable as a commercial lighting source than green LEDs. In addition, the use of suitable pulses of LEDs might save energy while inducing plant growth similar to that under continuous LEDs. Our findings provide important basic information for designing optimal light sources for use in a PFAL.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-3452 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1615  
Permanent link to this record
 

 
Author Polivka, T.N.; Wang, J.; Ellison, L.T.; Hyer, E.J.; Ichoku, C.M. url  doi
openurl 
  Title Improving Nocturnal Fire Detection With the VIIRS Day-Night Band Type Journal Article
  Year 2016 Publication (up) IEEE Transactions on Geoscience and Remote Sensing Abbreviated Journal IEEE Trans. Geosci. Remote Sensing  
  Volume 54 Issue 9 Pages 5503-5519  
  Keywords Remote Sensing  
  Abstract Building on existing techniques for satellite remote sensing of fires, this paper takes advantage of the day-night band (DNB) aboard the Visible Infrared Imaging Radiometer Suite (VIIRS) to develop the Firelight Detection Algorithm (FILDA), which characterizes fire pixels based on both visible-light and infrared (IR) signatures at night. By adjusting fire pixel selection criteria to include visible-light signatures, FILDA allows for significantly improved detection of pixels with smaller and/or cooler subpixel hotspots than the operational Interface Data Processing System (IDPS) algorithm. VIIRS scenes with near-coincident Advanced Spaceborne Thermal Emission and Reflection (ASTER) overpasses are examined after applying the operational VIIRS fire product algorithm and including a modified “candidate fire pixel selection” approach from FILDA that lowers the 4-μm brightness temperature (BT) threshold but includes a minimum DNB radiance. FILDA is shown to be effective in detecting gas flares and characterizing fire lines during large forest fires (such as the Rim Fire in California and High Park fire in Colorado). Compared with the operational VIIRS fire algorithm for the study period, FILDA shows a large increase (up to 90%) in the number of detected fire pixels that can be verified with the finer resolution ASTER data (90 m). Part (30%) of this increase is likely due to a combined use of DNB and lower 4-μm BT thresholds for fire detection in FILDA. Although further studies are needed, quantitative use of the DNB to improve fire detection could lead to reduced response times to wildfires and better estimate of fire characteristics (smoldering and flaming) at night.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0196-2892 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1781  
Permanent link to this record
 

 
Author Rund, S.; O'Donnell, A.; Gentile, J.; Reece, S. url  doi
openurl 
  Title Daily Rhythms in Mosquitoes and Their Consequences for Malaria Transmission Type Journal Article
  Year 2016 Publication (up) Insects Abbreviated Journal Insects  
  Volume 7 Issue 2 Pages 14  
  Keywords Animals; Human Health  
  Abstract The 24-h day involves cycles in environmental factors that impact organismal fitness. This is thought to select for organisms to regulate their temporal biology accordingly, through circadian and diel rhythms. In addition to rhythms in abiotic factors (such as light and temperature), biotic factors, including ecological interactions, also follow daily cycles. How daily rhythms shape, and are shaped by, interactions between organisms is poorly understood. Here, we review an emerging area, namely the causes and consequences of daily rhythms in the interactions between vectors, their hosts and the parasites they transmit. We focus on mosquitoes, malaria parasites and vertebrate hosts, because this system offers the opportunity to integrate from genetic and molecular mechanisms to population dynamics and because disrupting rhythms offers a novel avenue for disease control.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2075-4450 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1421  
Permanent link to this record
 

 
Author Keshet-Sitton, A.; Or-Chen, K.; Yitzhak, S.; Tzabary, I.; Haim, A. url  doi
openurl 
  Title Light and the City: Breast Cancer Risk Factors Differ Between Urban and Rural Women in Israel Type Journal Article
  Year 2016 Publication (up) Integrative Cancer Therapies Abbreviated Journal Integr Cancer Ther  
  Volume 16 Issue 2 Pages 176-187  
  Keywords Human Health  
  Abstract Women are exposed to indoor and outdoor artificial light at night (ALAN) in urban and rural environments. Excessive exposure to hazardous ALAN containing short wavelength light may suppress pineal melatonin production and lead to an increased breast cancer (BC) risk. Our objective was to address the differences in BC risks related to light exposure in urban and rural communities. We examined indoor and outdoor light habits of BC patients and controls that had lived in urban and rural areas in a 5-year period, 10 to 15 years before the time of the study. Individual data, night time sleeping habits and individual exposure to ALAN habits were collected using a questionnaire. A total of 252 women (110 BC patients and 142 controls) participated in this study. The sample was divided to subgroups according to dwelling area and disease status. Age matching was completed between all subgroups. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated for urban and rural women separately, using binary logistic regression. OR results of urban population (92 BC patients and 72 control) revealed that BC risk increases with daily use of cellphone (OR = 2.13, 95% CI = 1.01-4.49, P < .05) and residence near strong ALAN sources (OR = 1.51, 95% CI = 0.99-2.30, P < .06). Nevertheless, BC risk decreases if a woman was born in Israel (OR = 0.44, 95% CI = 0.21-0.93, P < .03), longer sleep duration (OR = 0.75, 95% CI = 0.53-1.05, P < .1), and reading with bed light illumination before retiring to sleep (OR = 0.77, 95% CI = 0.61-0.96, P < .02). Furthermore, in the rural population (18 BC patients and 66 control) BC risk increases with the number of years past since the last menstruation (OR = 1.12, 95% CI = 1.03-1.22, P < .01). However, BC risk decreases with longer sleep duration (OR = 0.53, 95% CI = 0.24-1.14, P < .1), reading with room light illumination before retiring to sleep (OR = 0.55, 95% CI = 0.29-1.06, P < .07), and sleeping with closed shutters during the night (OR = 0.66, 95% CI = 0.41-1.04, P < .08). These data support the idea that indoor and outdoor nighttime light exposures differ between urban and rural women. Therefore, we suggest that women can influence BC risk and incidence by applying protective personal lighting habits. Further studies with larger sample sizes are needed to strengthen the results.  
  Address University of Haifa, Mount Carmel, Haifa, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1534-7354 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27440788 Approved no  
  Call Number LoNNe @ kyba @ Serial 1492  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: