toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Qiu, S.; Shao, X.; Cao, C.; Uprety, S. url  doi
openurl 
  Title Feasibility demonstration for calibrating Suomi-National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite day/night band using Dome C and Greenland under moon light Type Journal Article
  Year 2016 Publication Journal of Applied Remote Sensing Abbreviated Journal J. Appl. Remote Sens  
  Volume 10 Issue 1 Pages 016024  
  Keywords Remote Sensing; Instrumentation  
  Abstract The day/night band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar-orbiting Partnership (Suomi-NPP) represents a major advancement in night time imaging capabilities. DNB covers almost seven orders of magnitude in its dynamic range from full sunlight to half-moon. To achieve this large dynamic range, it uses four charge-coupled device arrays in three gain stages. The low gain stage (LGS) gain is calibrated using the solar diffuser. In operations, the medium and high gain stage values are determined by multiplying the gain ratios between the medium gain stage, and LGS, and high gain stage (HGS) and LGS, respectively. This paper focuses on independently verifying the radiometric accuracy and stability of DNB HGS using DNB observations of ground vicarious calibration sites under lunar illumination at night. Dome C in Antarctica in the southern hemisphere and Greenland in the northern hemisphere are chosen as the vicarious calibration sites. Nadir observations of these high latitude regions by VIIRS are selected during perpetual night season, i.e., from April to August for Dome C and from November to January for Greenland over the years 2012 to 2013. Additional selection criteria, such as lunar phase being more than half-moon and no influence of straylight effects, are also applied in data selection. The lunar spectral irradiance model, as a function of Sun–Earth–Moon distances and lunar phase, is used to determine the top-of-atmosphere reflectance at the vicarious site. The vicariously derived long-term reflectance from DNB observations agrees with the reflectance derived from Hyperion observations. The vicarious trending of DNB radiometric performance using DOME-C and Greenland under moon light shows that the DNB HGS radiometric variability (relative accuracy to lunar irradiance model and Hyperion observation) is within 8%. Residual variability is also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-3195 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1372  
Permanent link to this record
 

 
Author Li, C.; Hsu, N.C.; Sayer, A.M.; Krotkov, N.A.; Fu, J.S.; Lamsal, L.N.; Lee, J.; Tsay, S.-C. url  doi
openurl 
  Title Satellite observation of pollutant emissions from gas flaring activities near the Arctic Type Journal Article
  Year 2016 Publication Atmospheric Environment Abbreviated Journal Atmospheric Environment  
  Volume 133 Issue Pages 1-11  
  Keywords Remote Sensing  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1373  
Permanent link to this record
 

 
Author Stockl, A.L.; O'Carroll, D.C.; Warrant, E.J. url  doi
openurl 
  Title Neural Summation in the Hawkmoth Visual System Extends the Limits of Vision in Dim Light Type Journal Article
  Year 2016 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 26 Issue 6 Pages 821-826  
  Keywords Vision; Animals  
  Abstract Most of the world's animals are active in dim light and depend on good vision for the tasks of daily life. Many have evolved visual adaptations that permit a performance superior to that of manmade imaging devices [1]. In insects, a major model visual system, nocturnal species show impressive visual abilities ranging from flight control [2, 3], to color discrimination [4, 5], to navigation using visual landmarks [6-8] or dim celestial compass cues [9, 10]. In addition to optical adaptations that improve their sensitivity in dim light [11], neural summation of light in space and time-which enhances the coarser and slower features of the scene at the expense of noisier finer and faster features-has been suggested to improve sensitivity in theoretical [12-14], anatomical [15-17], and behavioral [18-20] studies. How these summation strategies function neurally is, however, presently unknown. Here, we quantified spatial and temporal summation in the motion vision pathway of a nocturnal hawkmoth. We show that spatial and temporal summation combine supralinearly to substantially increase contrast sensitivity and visual information rate over four decades of light intensity, enabling hawkmoths to see at light levels 100 times dimmer than without summation. Our results reveal how visual motion is calculated neurally in dim light and how spatial and temporal summation improve sensitivity while simultaneously maximizing spatial and temporal resolution, thus extending models of insect motion vision derived predominantly from diurnal flies. Moreover, the summation strategies we have revealed may benefit manmade vision systems optimized for variable light levels [21].  
  Address Department of Biology, University of Lund, Solvegatan 35, 22362 Lund, Sweden  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26948877 Approved no  
  Call Number LoNNe @ kyba @ Serial 1374  
Permanent link to this record
 

 
Author Kolláth, Z.; Dömény, A.; Kolláth, K.; Nagy, B. url  doi
openurl 
  Title Qualifying lighting remodelling in a Hungarian city based on light pollution effects Type Journal Article
  Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 181 Issue Pages 46-51  
  Keywords Skyglow; Lighting  
  Abstract The public lighting system has been remodelled in several Hungarian cities. In some cases the majority of the old luminaries were fitted with high pressure sodium lamps and they were replaced with white LED lighting with a typical correlated colour temperature of about 4500 K. Therefore, these remodelling works provide a testbed for methods in measurements and modelling. We measured the luminance of the light domes of selected cities by DSLR photometry before and after the remodelling.

Thanks to the full cut off design of the new lighting fixtures we obtained a slight decrease even in the blue part of the sky dome spectra of a tested city. However, we have to note that this positive change is the result of the bad geometry (large ULR) of the previous lighting system. Based on Monte Carlo radiative transfer calculations we provide a comparison of different indicators that can be used to qualify the remodelling, and to predict the possible changes in light pollution.
 
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @; GFZ @ kyba @ Serial 1375  
Permanent link to this record
 

 
Author Hüppop, O.; Hüppop, K.; Dierschke, J.; Hill, R. url  doi
openurl 
  Title Bird collisions at an offshore platform in the North Sea Type Journal Article
  Year 2016 Publication Bird Study Abbreviated Journal Bird Study  
  Volume 63 Issue 1 Pages 73-82  
  Keywords Animals; Ecology  
  Abstract Capsule Collisions with offshore structures in the North Sea could account for the mortality of hundreds of thousands of nocturnally migrating birds.

Aims To assess, for the first time, the circumstances of mass fatalities at an offshore structure, including the species involved, their numbers, ages, body conditions and injuries.

Methods At an unmanned tall offshore research platform in the southeastern North Sea, bird corpses were collected on 160 visiting days from October 2003 to December 2007. Corpses were identified to species and kinds of injury, ages, and fat and muscle scores were determined. Nocturnal bird calls were recorded, identified to species and quantified. Local and large-scale weather parameters were also considered.

Results A total of 767 birds of 34 species, mainly thrushes, European Starlings and other passerines, were found at 45 visits. Most carcasses were in good body condition and young birds were not more affected than adults. Three quarters of 563 examined individuals had collision induced injuries. Birds in poor body condition were less likely to be collision victims than those in good condition. Mass collision events at the illuminated offshore structure coincided with increasingly adverse weather conditions and an increasing call intensity of nocturnal birds.

Conclusions Assuming an average of 150 dead birds per year at this single offshore structure and additionally assuming that a considerable proportion of the corpses were not found, we estimate that mortality at the 1000 + human structures in the North Sea could reach hundreds of thousands of birds. Since offshore industrialization will progress and collision numbers at offshore turbines will consequently increase considerably, we recommend reinforced measures to reduce bird strikes at offshore structures, especially in the light of substantial declines in some migrant species.
 
  Address  
  Corporate Author Thesis  
  Publisher (down) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3657 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1377  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: